

Programmable Logic Controller KV Nano Series

Expanding Capabilities

Connector type

KEYENCE makes it seamless.

Seamlessness allows you to use any model you want. This ensures a comfortable environment where you can select the optimum PLCs according to your control targets and applications.

Conventional case

We know it is more costly, but we stick with large PLCs even for smaller applications because we don't want to learn a different set of instructions.

KEYENCE's Same instructions

The same instructions can be used regardless of the product series, from frequently-used normally open contacts to PID and other application instructions. This eliminates the stress of using different instructions and ensures more comfortable programming.

KV Nano Terminal block type	KV Nano Connector type	KV-8000 Series
Normally ON	CR2002 -	\longrightarrow
10 ms clock	CR2004 -	\longrightarrow
Addition/ subtraction	+/- =	\longrightarrow

All PLC models are programmed using

the same version of software.

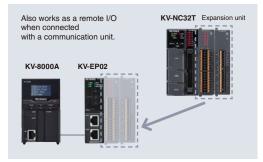


Conventional case

Since available software and functionality may vary depending on the PLC model, we need to keep many versions of programming software available and be mindful of the differences between them.

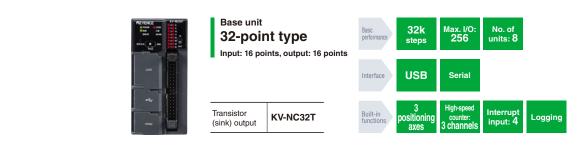
KEYENCE's Same software

The KV Nano not only uses the same software as other KV PLCs, but it also dispels the notion that programming methods cannot be consistent across different PLC models. You can still use functions like KV Script and real-time chart monitor, regardless of the PLC model.



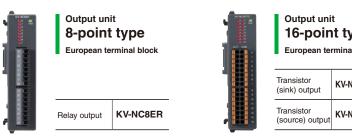
Conventional case

PLC hardware is tied to a particular series, which prevents us from using common hardware when using a variety of PLC series.


KEYENCE's Same hardware

The expansion unit of the KV Nano Series can not only be used for remote I/O but also works as a shared remote I/O with the KV-8000 Series. This allows you to use the same parts for large and small applications, resulting in cost reduction.

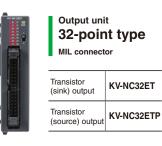
Connector type: Base unit Many built-in functions



Lineup supporting wide range of applications **Expansion unit**

Input unit

Output unit



Output unit 16-point type MIL connector

Transistor (sink) output	KV-NC16ET
Transistor (source) output	KV-NC16ETP

Output unit

I/O unit

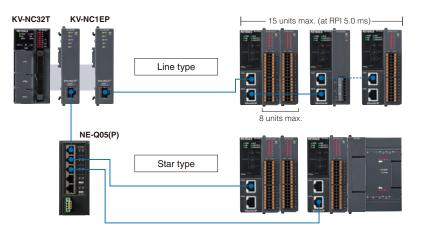
I/O unit 32-point type 64-point type

MIL connector

* The photo shows the KV-NC16EXT.

DC input Transistor (sink) output Input 16 points Output 16 points	KV-NC16EXT
DC input Transistor (sink) output Input 32 points Output 32 points	KV-NC32EXT

Communication unit



EtherNet/IPTM compatible Communication unit EtherNet/IPTM

Communication speed KV-EP02 100 Mbps

System configuration example

The KV-EP02 supports both line- and star-type connections. Since there are 2 ports, the unused port can be used as a switching hub to allow flexible wiring.

KVNano Line-up

Terminal block type: Base unit Simple lineup for easy selection

		REVENCE KY-KILLAR	
-			-
AT 1.5	*****		

Base unit 14-point type Input: 8 points, output: 6 points			
	Relay	KV-N14AR	
AC	Transistor (sink)	KV-N14AT	
	Transistor (source)	KV-N14ATP	
	Relay	KV-N14DR	
DC	Transistor (sink)	KV-N14DT	
	Transistor (source)	KV-N14DTP	

Basic performance	8k steps	Max. I/O: 128	No. of units: 3
Interface	USB	Serial	
Built-in functions	2 positioning axes	High-speed counter: 2 channels	Interrupt input: 4
* NI-4	and a second at		

Not compatible with KV-NC1EP

	PEYENCE

	1
BERIAL.	
ar	CHICKLE HILM

Ba	ase unit
24	4-point type
Inp	out: 14 points, output: 10 points

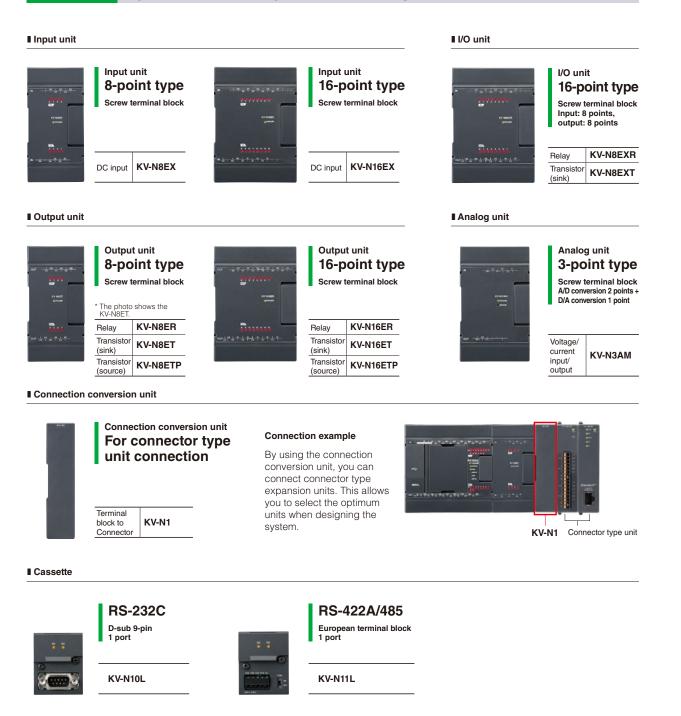
	Relay	KV-N24AR
AC	Transistor (sink)	KV-N24AT
	Transistor (source)	KV-N24ATP
DC	Relay	KV-N24DR
	Transistor (sink)	KV-N24DT
	Transistor (source)	KV-N24DTP

Basic performance	8k steps	Max. I/O: 256	No. of units: 8
Interface	USB	Serial	
Built-in functions	2 positioning axes	High-speed counter: 2 channels	Interrupt input: 4

Base unit 40-point type Input: 24 points, output: 16 points

	Relay	KV-N40AR
AC	Transistor (sink)	KV-N40AT
	Transistor (source)	KV-N40ATP
	Relay	KV-N40DR
DC	Transistor (sink)	KV-N40DT
	Transistor (source)	KV-N40DTP

Basic performance	16k steps	Max. I/O: 256	No. of units: 8
Interface	USB	Serial	
Built-in functions	3 positioning axes	High-speed counter: 3 channels	Interrupt input: 4



	Relay	KV-N60AR
AC	Transistor (sink)	KV-N60AT
	Transistor (source)	KV-N60ATP
	Handleter (course)	

Basic performance	16k steps	Max. I/O: 256	No. of units: 8
Interface	USB	Serial	
Built-in functions	4 positioning axes	High-speed counter: 4 channels	Interrupt input: 4

Expansion unit Optional units to expand functionality

hardware

Hardware features by type

No power supply unit required No base unit required

Space-saving while remaining practical

No power supply unit required

24 VDC power can be supplied directly from a control panel to the CPU unit, eliminating cost for a power supply unit.

Space saving

All of the base and expansion units are designed for space saving. This is useful when you want to make the control panel as small as possible.

Baseless structure

The CPU unit and expansion unit are connected through the connectors on the unit side. The connected units can be attached to a DIN rail, ensuring easy installation.

SD card slot provided

You can save/read projects or log device data with an SD card. No additional unit, such as a data collection unit, is necessary.

Built-in USB port

High-speed data transfer with a PC can be established with a commercial USB cable. Since a standard Type B cable is used, there is no need to purchase a cable separately.

Highly-functional I/O

The base unit itself has general I/O as standard. It can also be used as a positioning unit or a high-speed counter, which allows cost reduction.

More features than typical small size PLC models

KVNano

Built-in USB port

A standard Type B USB cable can be used for all KV Series models. There is no need to use different cables for different series or purchase special cables separately.

Extension cassette attachable

An extension cassette can be attached to the 14/24-point type unit and 2 extension cassettes to the 40/60-point type unit.

Built-in analog potentiometers

The base unit has 2 built-in analog potentiometers. Since their values are assigned to specific control memories, it is easy to make fine adjustments during debugging.

Expansion unit extension cable

The OP-87581 extension cable extends the distance between units by 1 m 3.3'. You can design your system according to your desired layout.

hardware

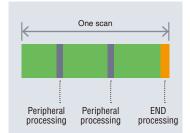
High-speed performance and reliability

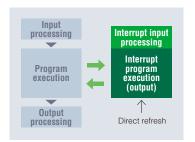
Uncompromising speed and stability are core KV qualities

high-speed 3k steps **O.3ms**

3k steps executed in 0.3 ms

This full 32-bit main CPU with a large capacity high-speed RAM and FPU (Floating point real number calculation unit) has achieved an LD instruction processing time of 50 ns. This is highly advantageous for systems that require high-speed processing.




Variations in processing suppressed to 10 µs or less

The KV Nano suppresses variations in scan time by adjusting its processing while monitoring scans. In a constant scan time operation, variations are suppressed to 10 µs or less, which is the equivalent level of large-size PLCs.

Interrupt response speed of 100 µs or less

The interrupt input, a standard function of the KV Nano, has achieved a high-speed responsiveness of 100 us or less. Direct refresh operations can execute from an input to an output within a single scan.

→ For even faster, ultra-high-speed control SERIES
Basic instruction execution 0.96 ns
Witra-high-speed CPU inner bus has A CPU inner bus has been interfuence to the interfuence to the

The KV-VELOCE X3, a special chip for ladder execution, has achieved ultra-

high-speed processing. This allows for consistent performance in high-speed operations.

A CPU inner bus has been introduced to provide high-speed response. This, in combination with a bus

for existing expansion units, enables high performance in systems that include existing hardware.

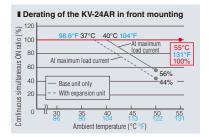
Minimum maintenance, maximum reliability

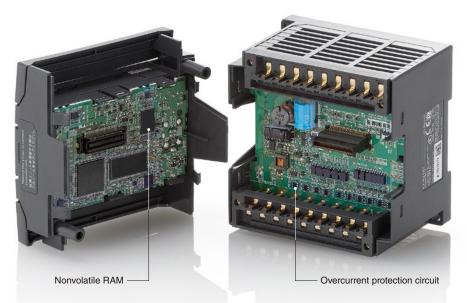
Battery-less

The adoption of nonvolatile FeRAM ensures device values and setting information are retained during power failures, without a battery. This eliminates problems due to lost device values as well as battery replacement work.

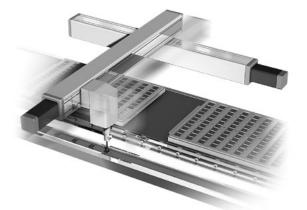
Minimum installation clearance of 30 mm 1.18"

The optimized internal structure design has achieved the ability to endure high temperatures. The minimum installation clearance of 30 mm 1.18° allows the use of smaller control panels.


Overcurrent protection circuit for all points


To ensure high reliability, every transistor output is equipped with an overcurrent protection circuit. This prevents malfunction due to touching by mistake or damage caused by inrush current.

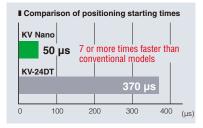
No derating in any unit


Derating has been eliminated by designing a housing that endures high temperatures and self-generated heat. This results in reliable operation for long periods.

hardware

Built-in positioning fun<u>ction</u>

high-spec positioning function max.4axes



High-speed response Min.O.3ms All axes 100kHzoutput

High-speed specifications for positioning

[Quick start]

An ultra-quick start within 50 us has been developed to support systems that require high-speed performance. The high-speed performance of the base unit ensures improvements in the processing time for the entire system.

[High-speed response]

Ultra-fast responsiveness to speed changes or target coordinate changes ensures improvements in processing time and accuracy of positioning control.

[Output]

All units are capable of 100 kHz output, supporting 3 axes with the connector type and up to 4 axes with the terminal block type.

Suppressing variation in stop positions

When a stop sensor is used, dedicated input terminals suppress variation in the position of each stop. This improves the accuracy of stop positions.

Target coordinates/speed changeable during operation

Target coordinates and speed can be changed not only while operation is stopped but even during positioning. Moreover, there are dedicated instructions that allow easy and quick changes.

Various origin return modes

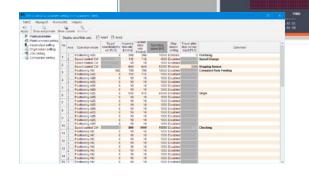
Various origin return modes are available such as a dog-type origin return and a press-against-type origin return, as well as a normal origin return mode and a Z-phase-based origin return.

Origin sensor startup	Dog type without Z phase
Origin sensor middle point	Dog type with Z phase
Origin sensor and Z phase	Dog type press-against

Easy programming and serious debugging

ng) Unity Conneg) Help : 윤김 성 😧 1 (박 1, 1:11) 🖬 🖛 🖛 🖛 🗐 은 은

Dedicated point parameters


All positioning-related settings can be specified easily by just selecting parameters. Since all parameters have been assigned to CMs (control memories), they can be changed with a ladder program.

No	Axis	Operation mode	Target coordinate/tra vel [PLS]	Accelera tion rate [Hz/ms]	ation rate [Hz/ms]	Operating speed [Hz]	Stop sensor setting
	1	Positioning ABS	0	208	208	18000	Enabled
1	2	Speed control CW	-1500	112	112	4800	Disabled
2	1	Speed control CW	-0	10	10	1000	Disabled
4	2	Speed control CW	50000	640	640	52000	Enabled
3	1	Positioning INC	982	700	700	18000	Disabled
3	2	Positioning ABS	0	112	112	1000	Disabled
4	1	Positioning ABS	0	10	10	1000	Disabled
•	2	Positioning ABS	0	10	10	1000	Disabled
5	1	Positioning ABS	0	10	10	1000	Disabled
5	2	Positioning ABS	0	10	10	1000	Disabled
	1	Positioning ABS	0	512	512	42008	Disabled
6	3	Positioning ABS	0	10	10	1000	Disabled

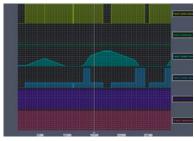
Many dedicated instructions

Instructions frequently used for positioning control have been provided as dedicated instructions. Programming can be finished easily in one line only, reducing programming man-hours.

PSTRT	Positioning
JOG	JOG Operation
ORG	Origin return
ТСН	Teaching
HOME	Move to home position
CHGSP	Speed change
CHGTGT	Target coordinate change
RFSPS	Current value refresh

Built-in function monitor

A special monitoring window is available that can be used for debugging positioning control. The window shows device comments as well which greatly improves debugging efficiency.


Comments	urrent value Display format	Device
axisl error	- 1-bit BIN	CR6402
axisl error code	O DEC 16BIT	CM8834
axis1 error clear	- 1-bit BIN	CR8002
axisl pulse output on	- 1-bit BIN	CR8400
axisl positioning cmplt relay	- 1-bit BIN	CR8401
axial current coordinates	-55 +/-DEC 32BIT	CM8830
axisl current speed	1475 DEC 328IT	CM8832
axisl execution point No.	3222 DEC 16BIT	CM8835
axisl forced stop	- 1-bit BIN	CR8000
axisl deceleration stop	- 1-bit BIN	CR8001
axis1 latsw cw direction input	- 1-bit BIN	CR8012
axisl lataw cow direction input	- 1-bit BIN	CR8013
axis1 stop sensor input	- 1-bit BIN	CR8015
axisl origin sensor input	- 1-bit BIN	CR8014
axisl origin return operating	- 1-bit BIN	CR8404
axial origin return complete	- 1-bit BIN	CR8405
axisl comparator 2 match relav	- 1-bit BIN	CR8415
axisl current coord che setting	0 +/-DEC 32BIT	CM8824
axisl current coord che request	- 1-bit BIN	CR8004
axis1 speed change setting	29600 DEC 328IT	CM8826
axisl speed change request	- 1-bit BIN	CREOOS
axis1 target coord chg setting	0 +/-DEC 32BIT	CM8828
axisl target coord chg request	- 1-bit BIN	CR8006
axis1 warning	- 1-bit BIN	CR8403
axisl warning clear	- 1-bit BIN	CR8003
axis1 exist	 1-bit BIN 	CR8414

KV-8000

SERIES

Real-time chart monitor

You can monitor various items simultaneously on one screen, including the current coordinates, speed, and a positioning complete flag. When the real-time chart monitor is opened from the built-in function monitor, related devices are registered automatically.

For multi-axis control/synchronous control

Motion control with a single unit

Various operations from positioning control to synchronous control can be performed with a single unit. Interpolation control and synchronous control can be

achieved in much the same way as performing positioning. The automatic

ladder creation function also helps reduce design time.

Connection with simplified wiring Finish connection with a single cable, without the

KV-X MOTION

need for complicated wiring. You can monitor all axes of the SV2 Series motors without

needing to change cable connections.

Controller settings Servo settings

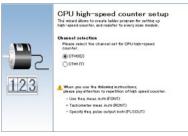
→ See "KV-X MOTION General Catalog" for details.

13

hardware

High-speed counter and SD card application

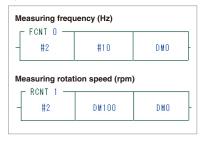
Highly-functional and wizarddriven high-speed counter, similar to module-type PLCs


100 kHz input supported by all channels

All channels support high-speed pulse inputs of 100 kHz (phase difference: 50 kHz). The 32-bit resolution ensures highly precise control similar to modular-type PLCs.

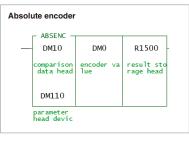
High-speed counter setting wizard

A special setting wizard enables programming of the high-speed counter, which in the past required much time and labor. When the wizard is complete, a ladder program will be created automatically.


Various useful functions

The high-speed counter enables the use of various functions without being affected by scan time, resulting in high-speed processing equivalent to modular-type PLCs.

Input capture function
Interrupt based on comparator coincidence
Comparator coincidence output
Direct clock pulse output


Frequency counter function

Input pulses are automatically converted into frequency (Hz) or rotational speed (rpm) and then stored into a DM (data memory). This eliminates the need for calculations using a ladder program, simplifying operation.

Cam switch function

A rotary encoder can be connected to provide an output at a specified position (angle). Up to 32 points of output positions can be set in units of 0.1 degrees. Both absolute and incremental encoders are supported.

Logging function

Device data can be logged to an SD card by completing just 2 steps. Logging triggers are flexible and can be issued not only periodically but also based on specific instructions.

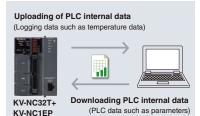
Logging/Train setting (E-0)	E		
Report of Contractions			
Topp Top1 Toriti Decision Relations	Enging There and ing (Kit) The path previously (COULDOOD) Rector aniso(C) (League *) Rectors aniso(C) (League *) Rectors (Stater (Stater (League))		6
Set a device to be logged and a trigger.	Dense Muse The Data Units Densition 1 DEC 168.71 DEC 168.71 Cools 1 DEC 168.71 DEC 168.71	Device connect Processing position Hearing Hearing Herican The scribe of residence The scribe of constition The scribe of constition The scribe of the Feesage Time Watting Time	Annes Desgel M Dessel T Dessel T Dessel T

Trace function

The data before and after the occurrence of an event can be saved, which makes troubleshooting easy. The trace function can be used easily even without an SD card.

						-						 10.11
			100									
	A NO 100		· · ·	LONDATATE								
		DACE.		LONDATATS								
		20112-20	13/24.30		3.0							
		2811220	13/24.00	182	22.4							
		201102-00	10/04/06	708	20.4							
		2011/12/08	12/04/00	170	18.1							
										enting i		
		and the price	10-349-342	64.4	10.4							
							1.00					
							144				2 V 44	
										Y.L	W	
		and be press										
2		3091.90.00	12/24-02	17.8							100 100	
		101110-00	12/24.05	100	- 22					-lak	d9	
		201102-00	1224.00	100	24							
		201102-00	12/24/26	175	- 14							
					- 22							
		20112-00	12/04/00	- 890				111				
		2010/01/02	10/04/04	809	18.2							
		1001.101-00	1000.04		10.4							
8 C		2011.02-08	1000.00	100	10.1							
				10.0								
					1815							
21		1001.00.00	12/26.54	100	- 22							
21		2011/12/05	12/26-24	182	244							
		201112-00	11/24.00	180	- 22							
		201120-00	1202.00	100	- 22							
s		2001102-00	1208.00		- 24							
-		1001-10-100	1000.00		- 21							
				- 2								
R		101112-00	10.04.00	- 22	(0.4							
HC		101111-00			114							
		2011/02/2011		10.0	(845)							
62 C		part egent		014	(24.3							

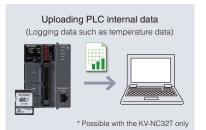
Auto loading function


Programs can be saved to or loaded from an SD card. This allows for program changes to be made off-site and then transferred via the SD card.

Also possible by turning the device (CR) on/off

FTP client/server function

By using the KV-NC1EP, you can upload the data on an SD card to a PC in CSV format. This allows you to establish a traceability system easily.


Easy-to-use applications

enabled by the SD card

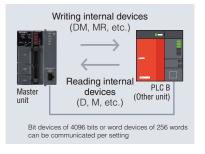
* The SD card slot is provided on the KV-NC32T only.

FTP client function

Data collected with the CPU's built-in logging function/trace function or the device values stored on an SD card can be uploaded to a PC in CSV format.

Simple PLC link function

In the past, linking to another PLC typically required a socket communication program. But now, an Ethernet-based PLC link can be established easily.


FTP server function

Setting files and parameters can be written from a PC to the SD card loaded in the PLC, which makes program changes easy.

PLC link with units from other manufacturers

Not only is easy PLC link possible between KV models, but also with MC protocol-compatible PLCs from other manufacturers. This makes it easy to establish communication with an existing system.

Easy setup with the dedicated setting window

The PLC link can be established easily by just setting items in dedicated window. No ladder program is required for the link.

elect	unit(U)	1:KV-NC1EP	-) 🛛 U	se simple	PLA	Clink function(L)	
LC II	nk settings	ማ						
	I.C	Trans	ter sour	ce		-	Tran	
Link, No.	Pattern	Unit		Devic			Unit	
		Grat	Ty		No.		Unit	
0	Write	Self-station (192.168.0.10)	Bit Word	DM DM	000	->	0.Mitsubishi Q/Qnl (192.163.0.0)	
1	Read	0:Mitsubishi Q/QnU (192.168.0.8)	Bit	0	1400	->	Self-station (192.168.0.10)	
2	Transfer	8 Mitsubishi Q/QnU (192 158.0.8)	Bit	X	10100	->	1 Mitsubishi A (192,168,0.12)	
		(192.168.0.8)	Word Bit	D	520	->	(192.168.0.12)	
		100	Word	***		1		
4			Bit			->		
Com		n setting n time out value(ms)(1 in case of communica		1000 eption(:		unik	ation retry times (R	

Easy-to-use PLC link via Ethernet for a wider range of applications

Various dedicated

Dedicated remote I/O and sensor

monitors are provided. KEYENCE's VT5 touch panel allows monitoring of

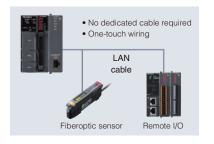
equipment in a list without creating a

screen. It is useful for identifying the

monitors

cause of problems.

Sensors and remote I/O connected easily via Ethernet


KV Nano Series

* Illustrative drawing

Lineup

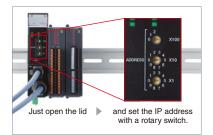
Simplified wiring with a LAN cable


Unlike with previous models, the PLC and a sensor can be connected quickly with a commercial LAN cable, saving hours normally spent on cable creation and wiring.

Connection without programming

Communication setup can be completed by just connecting the equipment, supplying power, and clicking the Auto Configuration button. There is no need for complicated communication programs or individual unit setup, saving many hours of work.

Sensor


Space saving

The industry's lowest profile case requires a minimal installation space. European terminal block-type models have an all-point common terminal. No external terminal block is necessary which leads to further space saving.

IP address setting with a rotary switch

IP addresses can be set with a built-in rotary switch on the communication unit. This ensures easy setting for anyone, using either software or hardware.

Device comment registration unnecessary

Monitor screen of the PC

The comment information of configured devices is automatically registered. You can retrieve comments without using device numbers, resulting in a reduction of programming hours.

	Direct	olout		Cmnt
Just search a comment		80200 :	KV-E902(1)OUT0(1)	
	tor –	80201 :	KV-EP02[1]OUT1[1]	
		80202 :	KV-EP02 [1] OUT2 [1]	
		B0203 :	KV-EP02(1)OUT3(1)	
without		B0204 :	KV-EP02(1)OUT4(1)	
registering		80205 :	KV-EP02 [1] OUTS [1]	
devices		8020€ :	MV-EP02(1)OUT6(1)	
		BASAS -	PRE-PRASTALANTELLA	
	Direct	a nc4ad		Cmnt
		80580	KV-7800[0].KV-EP02[1].	W-NC4AD[3].A
Can be sort	ho	BOSBE :	KV-7500[0].KV-EP02[1].3	W-NC4AD(3).E
0411 00 0010	eu —	B0590 :	KV-7500(0).KV-EP02(1).	W-NC4AD(3).C
by model		80591 :	KU-7500(0].KU-ED02(1).	W-NC4AD[3].C
		B0592 :	KV-7500(0].KV-EP02(1).	W-NC4AD(3).C
		80593	KV-7500(0).KV-EP02(1).	W-NC4AD(3).C
		B0594 :	KV-7500[0].KV-EP02[1].1	W-NC4AD[3].C
		ROSSR	PV-7500101 PV-R802111 1	NU-NC4AD131 C

Analog/ temperature control

Advanced and easy analog control, similar to modular-type PLCs

High-speed conversion, high resolution and high accuracy

The conversion speed, resolution and conversion accuracy required for analog control has been achieved even for small to medium scale control. More complete control is now possible.

Averaging and other functions

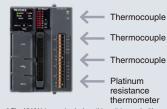
You can not only specify time or count but also use a moving average. Since the average is calculated within the unit, it is not affected by scan time.

Count/time/moving average

Zero clip

Comparator function

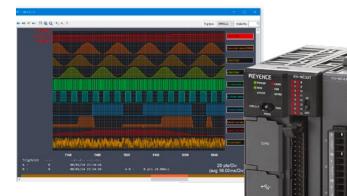
Disconnection detection function


6 I/O ranges provided

A total of 6 I/O ranges, 4 for voltage and 2 for current, can be selected to allow connection of various external equipment.

Voltage range	Current range
-10 to 10 V	
0 to 10 V	0 to 20 mA
0 to 5 V	4 to 20 mA
1 to 5 V	

Temperature input unit KV-NC4TP

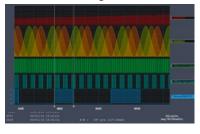

The KV-NC4TP connector type unit enables the use of inputs from a thermocouple or a platinum resistance thermometer.

* The KV-N1 is required when this unit is used with a terminal block type PLC.

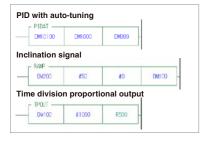
()) += @DM8.FIF (LDP(@T0) AND NOT MR0) THEN @DM12+=2 END IF IF @DM12>= 2 * 1000 THEN @DM12=0 END IF IF MRO THEN FOR @DM10 = 0 TO 100 IF 1000 >= @DM0 THEN IF 1000 > @DM2 THEN TF 1000 > @DM2 THEN COS(@DM4.F * FLOAT(@DM0) * (FLOAT(@DM2))) SIN(@DM4.F * FLOAT(@DM0) * (FLOAT(@DM2))) DM1000.F:(2 * (@DM0 - 1)) += @DM6.F DM1000.F:(2 * (@DM0 - 1)) += @DM6.F DM1000.F:(2 * (@DM12 = DM10000.F END IF 12>= 2 * 1000 THEN @DM12=0 END IF THEN 6 6 6

Unit Editor for easy configuration

All of the settings, such as the range of I/O signals and averaging, can be specified with the Unit Editor. No setting program is required.


Scaling function

Values loaded from external equipment can be converted (scaled) to the desired values. This eliminates the need for a calculation program in the ladder program.


Real-time chart monitor

During debugging, you can monitor the change in values as a waveform. Data can be acquired for each scan time, which enables identification of instantaneous changes.

Useful instructions provided

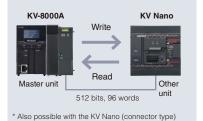
Many useful instructions for analog control and temperature control have been provided to allow a wider range of controls.

Ultra-high-speed sampling of 10 µs

In accordance with the highspeed performance of the CPU unit, the conversion speed has been increased greatly to 10 µs/channel. The resolution has also been improved to 1/20000 to ensure high precision. This leads to higher production efficiency and improved quality.

 \rightarrow See "KV Series General Catalog" for details.

Increased functionality and Usability


hardware

Serial communication

Use serial for PLC link and Modbus communication

Link up to 16 units, 96 words

Distributed control or PLC link can be achieved through serial communication. An algorithm for minimizing the influence of ladder execution on serial communication processing ensures delays are eliminated in PLC links.

Serial PLC link setting

The dedicated setting window allows for setup of the serial PLC link without needing to reference the manuals. The setup items are shown in a list so that they can be easily checked.

WordDi P4: Word Date Connection safed (** P4 said which drives at #4 sateshich drives at #4 sate	Linkseti	ng								Abs	ignmentview																		
Listing antimity Image: State of a st	Max, connected units(.) 4 .			units (c	units (cocupied area segments)				Leading Elit/Word																				
Lastrag entity() () () () () () () () () () () () () (Leading	00,00				1000	0	By that	nal		1.1	_																	
Induitability (1) Int (1) Int (2) Int (1) East Int (2) (1) <td< td=""><td>Leading</td><td>NORCH (N)</td><td></td><td>in .</td><td>•</td><td>3005</td><td>\$</td><td>Byword</td><td></td><td></td><td></td><td></td></td<>	Leading	NORCH (N)		in .	•	3005	\$	Byword																					
Consider Labeling - Plassis and the direction of the states hits hits monochas). Darks Constraint Time Direction Direct	Individual link size		BH(T)		6(0)		m			+	Birt																		
Consider using CF Mass sidelife devides if is allowed by served(s). Using CF Mass sidelife devides if is allowed by served(s). Using CF Mass sidelife devides if is allowed by served(s). Da bit Line Commark Not Served(s). Using CF Mass sidelife devides if is allowed by served(s). Da bit Line Commark Not Served(s). Using CF Mass served(s). 1 X Commark Not Served(s). Served(s). 2 X Commark 20150-1175 Model: e000. Served(s). 3 X Commark 20150-1175 Model: e000. Served(s).				Word	DI		24.0	Word																					
Da Na Lisermark Bit Truct Description Bit 0 // /	Canned	on sette	10 (** PI		led t	te check	bes of 8	te station	to be connected	0																			
8 2 Figs. 65.7 MODE Course of an and and and and and and and and and	Challo	Link		Comm								-																	
1 V SeverA D200-107 M023-692. Michigan Michigan </td <td></td> <td></td> <td colspan="2"></td> <td colspan="2"></td> <td></td> <td></td> <td></td> <td></td> <td>Grand</td>											Grand																		
2 2 convey C 81100-117 00016-007C 8110 3 2 convey C 81100-117 00016-007C 8110 3 2 convey C 81100-1195 00016-007C 8110 Seree										00	mants 0																		
2 2 convey C B1100-11F M0065-007C										100	station																		
Taria Silve																													
	1		CORVE	V/C		811	80 - 11	++	70065-0070			Bark																	

Modbus master/slave function

Open network Modbus communication can be established easily. The function supports both the master function for controlling temperature controllers, etc. and the slave function for controlling touch panels or other equipment connected to the master.

Modbus trace function

A dedicated Modbus communication debugging function has been provided. The contents of commands and responses can be monitored without a protocol analyzer, so that many startup hours can be reduced.

Ladder support software that can be operated intuitively

V STUDIO

RT (Real Time) edit Ver. UP

By directly entering a device comment or buffer memory comment during

displayed as a candidate. This enables

been improved through the addition of

paran paran end ready

command entry, the comment will be

programming without the need for a

manual. The search capability has

Unused device search

When "?" is added after a device

number, unused devices on the

program are displayed as input

Type "?" directly

DM5 DM6

Direct mov dm?

AND searches.

Direc AND

searching is possible.

The KV Nano is compatible with KV STUDIO, the configuration software for the KV Series. This allows you to utilize the same software for simple or complicated applications, making startup easier.

Display of instruction candidates

The list of instructions starting with the character you entered is displayed. You can write even unfamiliar instructions without referring to manuals.

Direct m Cmnt MCALL MCMP MCOPY MCR MDEL MDSTOP MDSTRT MEF

Windows[®]-style operation

style operation. Programming proceeds

Ctrl

Ctrl

candidates. This eliminates the need to check usage status.

Operand entry guidance

The description of necessary operands to be input is displayed as guidance. You can use instructions during programming without referring to manuals even when you use them for the first time.

Customizable keys

Even if you are used to using different ladder software, switching to this software is easy and intuitive. Users can specify their own keyboard operations by assigning unique shortcut keys.

The basic operation follows Windows®in a familiar way.

Copy

Paste

Find

Replace

DM7 DM8 DM9 DM14 DM1 5 **Comfortable operation** based on your intuition and style

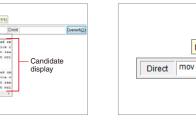
Cmnt

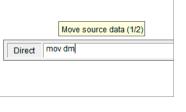
мо — — —	м161	M32	M35	M48	M49	M50	Y50
automat ic oper ation m ode	auto-ru n enabl e	manual operati on	work ch eck sta te	error o ccurren ce LEFT	error o ccurren ce RIGH T	error o ccurren ce ⇔CEN TER	auto-ru nning
v50 auto-ru nning							K550 T 12
calcula tion ex				D100 =	ate distan (D2 + D10) D100 * D20) * 12 + D15	
M320	Y50	M35	M48	M49	MSO		Y51
manual operati on mode	auto-ru nning	work ch eck sta te	error o ccurren ce LEFT	error o ccurren ce RIGH T	error o ccurren ce ¢CEN TER		manual operati ng
x15							Y52
compell ing sto							stoppin g

DO K10

KV Concept

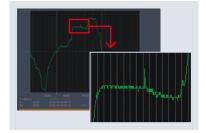
Lineup


21


KVNano

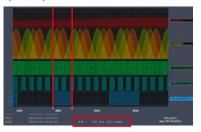
KVSTUDIO

software interface

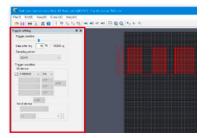


Real-time chart monitor

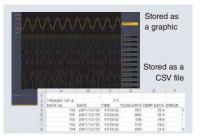
Even instantaneous changes will not be missed by Real-time chart monitor


Instantaneous changes detectable

Device data is stored in the CPU memory and then loaded to a PC. Even instantaneous changes which are normally overlooked can be recognized reliably.


Time measurement by cursor control

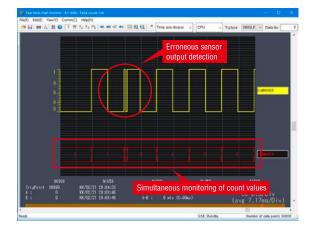
The time between any two points, such as pulse duration time, can be measured in milliseconds. This function can be used to check the actual takt time of processing that requires high speed operation.


Trace function

The trace function captures data before and after the occurrence of an event, which is useful for troubleshooting. The cycle can be set for each scan.

Two storage formats available

Two storage patterns are available: As a waveform display or as a CSV file. Data can be stored in accordance with applications.



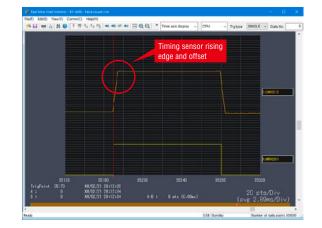
8 words and 16 bits can be monitored simultaneously

Real-time chart monitor applications

Erroneous sensor output detection

In the event of a problem with a sensor signal count, symptoms that previously required an oscilloscope to check can now be identified.

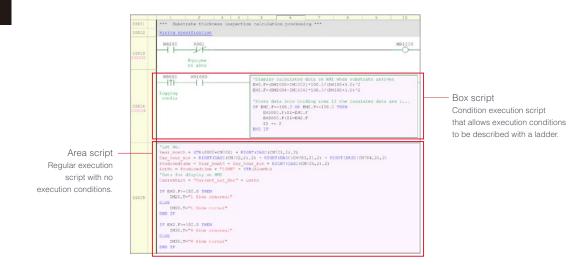
Trp tore SHACLE ~ Data N


Detection of malfunctions due to the influence of other devices

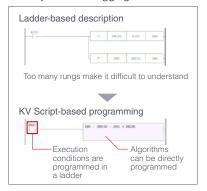
When a problem occurs with a captured analog value, monitoring the bit and word data at the same time makes it easy to determine the cause.

Fluctuating analog values during f othei

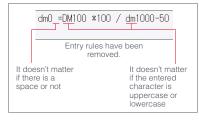
Timing deviation detection


Even if a malfunction occurs due to timing discrepancies between bits or with controls that use bit signals to acquire analog values, finding the cause is easy.

software


KV Script

KV Script allows for easy programming of calculations, conditional branching, and more


Directly programmable algorithms

Calculation processing programs can be executed just by writing the formula directly. This not only reduces programming hours but also increases visibility when debugging.

"Ambiguous entry" for intuitive programming

"Ambiguous entry" allows users to enter characters without knowing the details of the input syntax. Users can create programs without worrying about the case or spacing of letters.

Description of control statements

Unlike with ladder programming, syntaxes and various functions required for advanced processing can be described concisely.

IF R000 = ON THEN	"When R000 is ON
DM000.7 = "Operating"	"Store "Operating" from DM000
ELSE	"When R000 is OFP
DM000.7 = "Stopping" END IF	"Store "Stopping" from DMOCO

Easy processing of strings

Character strings that are difficult to process using ladder language can be utilized as-is. Like algorithms, character strings can be easily composed and compared, and users can compose them without considering the number of devices or ASCII codes which allows for intuitive understanding of the details.

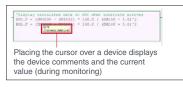
Character stri The current DN composed in A	1100 value is transformed ar	nd
1000	DB0.T = "Freduction" + STR(DM100)	
■ Character stri The DM000 val		
R300	19 DH0.7 = "TypeA" THEN 3500 = CH 2500 17	}

KVSTUDIO

Function Input Guidance

Even if you can't remember a function, simply press the shortcut keys (Ctrl + Space) and enter a few letters to show a list of functions starting with the entered text.

8311	Entry guidance is displayed.
[Ctrl]+[Space]
A list of	functions is displayed. (When an alphabetical letter is
entered,	a narrowing-down search is carried out.)


Manual Search Function

To provide quick access to information on how to use an inserted function, press the shortcut key (F1) to view the manual of the relevant function.

Pressing (E1) for	a sele	cted	fun	ction
prings up				i unit	00011
nings up	uie He	ih aish	iciy.		
BMOV	SHOULD SHOULD	-{**T	D.		Moves 16/32-br
	ATTEN			lillock mow	data in blocks to
@BMOV	1 demova	-	D.		specified device
Latteransish			Pp.J rule		

Tool tip monitor

Simply placing the cursor over the device during monitoring displays the device comments and current values, so monitoring a device is easy.

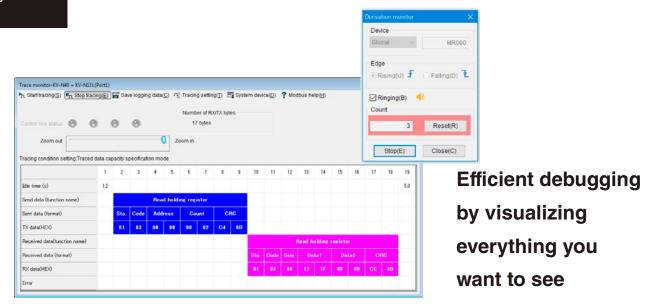
Watch window

Monitoring all devices within KV Script is possible just by clicking the device during monitoring. This allows for debugging in much the same way as a ladder program monitor.

	Device	Ourcent value.	Display forms	Common	
	58130 596,012 596,010 596,014 596,014 596,014 596,014 596,014 596,014	456 5473 -172,4281 654 6493	DEC 1483T	Thiskness data 2 runi Thiskness data 1 runi Thiskness data 4 runi Thiskness data 3 runi	
	10,000		1-845 028 1-845 028	Scening confignation	
-	HE LOLD	1	HL.F ADM1000 -	ez alta in Mel vide a berad Meladaj - 360.6 / 68000 - Meladaj - 300.6 / 68000 -	5.0112

Usable operators and control statements in KV Script

Туре	Operator	Description
	+	Calculate summation of 2 values (addition)
	-	Calculate difference of 2 values (subtraction)
Arithmetic	*	Calculate product of 2 values (multiplication)
Anumenc	/	Calculate quotient of 2 values (division)
	٨	Calculate the power
	MOD	Divide 2 values, return remainder
	<	Less than
	<=	Less than or equal to (or less)
Compare	>	Greater than
oompare	>=	Greater than or equal to (above)
	=	Equal to (equivalent)
	<>	Unequal to (non-equivalent)
	=	Substitute the right into the left
	+=	Right plus Left
Assign	-=	Right minus Left
	*=	Right multiplied by Left
	/=	Left is divided by Right
Character string	+, &	Connect 2 character strings
	AND	Logical multiplication of 2 values (AND)
Logic	OR	Logical addition of 2 values (OR)
Logic	XOR	EOR logic of 2 values
	NOT	Calculate logical not value


Control Statement

Туре	Control statement	Description
	IF statement	IF «Conditional equation 1> THEN (If the condition 1 is true, executed) ELSE IF «Conditional equation 2> THEN (If the condition 2 is true, executed) ELSE IF «Conditional equation 3> THEN (If the condition 3 is true, executed) ELSE (If all the conditions are not true, executed) END IF
Conditional branch	SELECT statement	SELECT CASE <device comparison=""> CASE <condition 1=""> (When equal to condition 1, executed) CASE <condition 2=""> Condition 4> condition 3> (When condition 4 and condition 5 are met, executed) CASE (S <comparison> <condition 6=""> (When the comparison with 6 is true, executed) CASE IS <comparison 6="" executed)<br="" is="" true,="" with="">CASE ESE (When equal to none of the conditions, executed) END SELECT</comparison></condition></comparison></condition></condition></device>
	MC statement	MC <conditional equation=""> THEN (If the condition is true, executed) MCR</conditional>
	FOR statement	FOR <loop condition=""> (When the loop condition is met, loop is executed) NEXT</loop>
Loop control	WHILE statement	WHILE <conditional equation=""> (When the loop condition is met, loop is executed) END WHILE</conditional>
	DO statement	DO (Until the condition is met, loop is executed) UNTIL <conditional equation=""></conditional>

Data Type

Suffix	Description
(Device) .U	Processed as unsigned 16-bit data* (0 to 65535)
(Device) .S	Processed as signed 16-bit data (-32768 to 32767)
(Device) .D	Processed as unsigned 32-bit data (0 to 4294967295)
(Device) .L	Processed as signed 32-bit data (-2147483648 to 2147483647)
(Device) .F	Processed as floating real number data $-3.4E+38 \le n \le -1.2E\cdot38$ n = 0 $+1.2E+38 \le n \le 4.34E+38$ (Significant digits: Approx. 7 digits)
(Device) .DF	Handled as double precision floating point actual number data $-1.79E+308 \le n \le -2.23E-308$ n = 0 $+2.23E-308 \le n \le +1.79E+308$ (Significant digits: Approx. 16 digits)
(Device) .B	Processed as bit data (ON: TRUE, OFF: FALSE)
(Device) .T	Processed as text string data
	ed when programming. thout postfixes handled as 16-bit unsigned data.

Efficient debugging

Batch monitor

You can improve efficiency by not only monitoring all devices together but also by turning them on/off directly and writing values into DMs. It is also possible to open several windows simultaneously.

Device(D)	🔘 Unit buffer mi	emory(0) 🔘 U	nit Intérr	nal device(U)
Program	Device	Current value	Displ	ay forms	15 0
Global	MR000	-	1-bit	BIN	
Global	MR001		1-bit	BIN	
Global	MR002	-	1-bit	BIN	
Global	MR003		1-bit	BIN	
Global	MR004		1-bit	BIN	
Global	MR005		1-bit	BIN	
Global	MR006	-	1-bit	BIN	
Global	MR007		1-bit	BIN	
Global	MR008	-	1-bit	BIN	
Global	MR009		1-bit	BIN	
Global	MR010	-	1-bit	BIN	
Global	MR011		1-bit	BIN	
Global	MR012		1-bit	BIN	
Global	MR013		1-bit	BIN	
Global	MR014		1-bit	BIN	
Global	MR015	-	1-bit	BIN	
Global .	MR100		1-hir	RTN	
<					3 4

Built-in function monitor

A dedicated monitor screen for built-in functions such as positioning or highspeed counting has been provided. There is no need to register devices during debugging.

	811 1 1 1 1 1 1 1 1 1			
	日本年代の月			
		et value (Laplay Format	Long to the second	
	CHAID	- 1-810 AM	AND A MOUNT	
	Children of Childr	0.000 34007	and of some state	
	Classic	* 2-905 A28	AND NOT COM	
	Change	COMPANY AND	said successing only raise	
	Ordala		and movies and and	
	(manip	14"s (m) append	and more many	
Built in function more				
	Canada	1 1 2 2 4 2 2 2 2	said facing size	
8-10				
	CMPUZ	- 3-805 BER		
	CREDLA	- 0-804 HIN	secul when second limit	
	-CR801.4	- 2-804 HIM	AND DESCRIPTION AND DESCRIPTION OF A DES	
iii) interrupt	Clinks	- 3-845 HDR	said tricks prise spectile	
- Interrupt	-25#w18.	× 1 dece #2#	anial veneza estata consista-	
	Capality	C ADDA NOT	anial comparation 2 month relat	
D-Postoning	Change .	T A MARY MARY	and converte many the sectors	
	CONTRACT OF CONTRACT.	ADDIT ONL ADDIT	and there there are an	
Product and and	100000	APPER DEL MARKET	and a shared charge periods	
	Cambin	C -1-OUT REALT	small factory down the artitude	
Positioning ax				
- Hoh-speed count				
	CM000			
- High-speed ct	Chiele	× 0-601.838	BALIC PAINS	
High-apend ceu	Har Crt1			
Specified frequency	pulse output		List of devi	
- Specified frecue		4 5115	LISE OF DEVE	ces
Specified freque				
			related to position	
E Prequency counter				
- Frequency court	ter CHD			
Francisco da la	Bar (****			

Registration monitor

You can monitor or write values of desired devices. By saving the registered devices, you can quickly monitor them during debugging without registering them every time.

Pro Save the registered				
Prog Save the registered	n /			
	davica inform	ne	destin	ation
Globa	a device inform	auon		
Global	MR001			
Global	MR002			
Global	MR003			
Global	MR004			
Global	MR005			
<				>

Derivation monitor

The derivation monitor enables you to check the rising and falling edges of signals, something that is difficult to do with conventional monitors. This eliminates the need to add debugging programs.

KV Concept

Software

Specifications

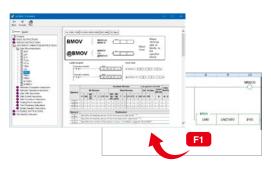
More comfortable debugging environment

Simulation function

You can simulate operation on the PC without using an actual PLC. The registration monitor and batch monitor can also be used to perform debugging.

Line invalidation

A section of code that you want to disable temporarily during debugging can be invalidated with a single operation. Re-enabling the code is also accomplished easily.


F12: Contact coil jump

Every time the F12 key is pressed, the cursor jumps to the next contact (coil) of the same device number. This is useful for troubleshooting during debugging.

F1: Instruction help function

The description of a selected instruction can be displayed with a single button-press. This allows you to quickly find information without searching through multiple documents.

One-key cross reference

The points at which the selected device is used are listed with a single operation. Moreover, you can jump to the corresponding program section by clicking the item in the search result.

SPECIFICATIONS (Connector type)

Performance specifications - Base unit

Model		KV-NC32T				
Calculation control method		Program storage method				
I/O control method		Refresh method				
Programming language		Expanded ladder, KV Script, mnemonic				
Number of instructions		Basic instruction: 81 types and 182 instructions, Application instruction: 39 types and 56 instructions Calculation instruction: 123 types and 311 instructions, Expansion instruction: 92 types and 141 instructions Total: 335 types and 690 instructions				
	Basic instruction	50 ns minimum				
Instruction execution speed	Application instruction	170 ns minimum				
Program capacity		32k steps				
Maximum number of attacha	ble I/O units	8				
Maximum number of I/O poi	nts (excluding the base unit I/O)	256				
Input relay Output relay Internal auxiliary relay	R	Total of 9600 points 1 bit (R000 to R59915)				
Link relay	В	8192 points 1 bit (B0 to B1FFF)				
nternal auxiliary relay MR		9600 points 1 bit (MR000 to MR59915)				
Latch relay	LR	3200 points 1 bit (LR000 to LR19915)				
Control relay	CR	1440 points 1 bit (CR000 to CR8915)				
Timer	T	512 points 32 bits (T0 to T511)				
Counter	C	256 points 32 bits (C0 to C255)				
Data memory	DM	32768 points 16 bit (DM0 to DM32767)				
Link register	W	16384 points 16 bit (W0 to W3FFF)				
Temporary memory	TM	512 points 16 bit (TMO to TM511)				
High-speed counter	СТН	3 points (CTH0 to CTH2) 32-bit automatic reset counter*1 (Input response: 100 kHz per single phase, 50 kHz per phase difference)*2				
High-speed counter comparator	СТС	6 points (CTC0 to CTC5) 32 bits, two points per high-speed counter				
Index register	Z	12 points 32 bit (Z01 to Z12)				
Control memory	CM	9000 points 16 bit (CM0 to CM8999)				
Positioning pulse output		3 axes Maximum output frequency: 100 kHz				
Base unit I/O		Input: 16 points output: 16 points Input common: 1 point Output common: 1 point				
Number of comments/	Device comment	20000 When a maximum-length ladder program is written with no labels.				
labels stored in main unit	Label	28000 When a maximum-length ladder program is written with no device comments.				
Power off hold function	Program memory Device* ³	Flash ROM can be rewritten 10000 times Norvolatile RAM				
Clock function		±60 seconds/month (at 25°C 77°F)				
0.000.10100001		CPU error, RAM error, and other problems				

 Self-diagnosis function
 CPU error, RAW

 *1 You can also configure the settings so that automatic reset is not used.
 *2 Only open collectors are supported. Line drivers are not supported.

 *3 You can set the target device by clicking "CPU system setting" and then "Power off holding" in KV STUDIO.
 *3 You can set the target device by clicking "CPU system setting" and then "Power off holding" in KV STUDIO.

General specifications - Base unit

Model			KV-NC32T							
Power voltage			24 VDC (+10%/-15%)							
Internal current consumption			KV-NC32T: 260 mA							
Ambient temperature		0 to 55°C 32 to 131°F (no freezing)*1								
Storage temperature		-25 to +75°C -13 to +167°F								
Ambient humidity		5 to 95% RH (no condensation)								
Withstand voltage		1500 VAC for 1 minute, between power supply terminal and I/O terminals and between all external terminals and case (1000 VAC for 1 minute, between power supply terminal and output terminals for the transistor output type expansion I/O unit)								
Noise immunity		1500 V peak-to-peak or more, pulse duration 1 µs, 50 ns (based on noise simulator) Conforms to IEC standards (IEC61000-4-2/3/4/6)								
			Scan times							
	Orafarra ta	Frequency	Acceleration	Amplitude						
		5 to 9 Hz	-	3.5 mm 0.14"						
Vibration resistance	Conforms to JIS B 3502 and	9 to 150 Hz	9.8 m/s ² 32.2'/s ²	-	10 times (100 minutes)					
VIDIALION TESISLANCE	JIS B 3502 and IFC61131-2		in each of the X, Y,							
	12001131-2	Frequency	Acceleration	Amplitude	and Z directions					
		5 to 9 Hz	-	1.75 mm 0.07"						
		9 to 150 Hz	4.9 m/s ² 16.1'/s ²	-						
Shock resistance		Acceleration: 150 m/s ² 492.1'/s ² , a	pplication time: 11 ms, three times i	n each of the X, Y, and Z directio	ns					
Insulation resistance		50 MΩ or more								
Insulation resistance	(500 VDC megger us	sed to perform measurements betw	een power supply terminal and input	terminals, and between all exter	nal terminals and case)					
Operating environment		As	ittle dust and corrosive gas as possi	ble						
Operating altitude			2000 m 6561.7' or less							
Overvoltage category										
Pollution degree			2							
Weight			Approx. 220 g							

*1 The temperature below the unit center (30 mm 1.18") inside a control panel.

Input specifications - Base unit

Model	KV-NC32T					
Input type	General input	High-speed A-phase and B-phase input				
Relay number	R000 to R009 (10 points)	R010 to R015 (6 points)				
Input mode	24 VDC input (o	open collector)				
Maximum input voltage	26.4 VDC					
Rated input voltage	24 VDC (5.3 mA*1)	24 VDC (6.5 mA*1)				
Ainimum ON voltage	19 VI	DC				
Maximum OFF current	1.5 r	mA				
Common point mode	All points/1 comm	non (1 terminal)				
Circuit delay time*2	OFF to ON: Max. 30 µs (Typ. 3.5 µs)	OFF to ON: Max. 2 µs (Typ. 1.1 µs)				
	ON to OFF: Max. 50 µs (Typ. 15 µs)	ON to OFF: Max. 2 µs (Typ. 0.3 µs)				
	When CR2305 is turned ON: 10 µs to 10 ms, eight-level switching is possible (set with CM1620). Can also be set from the Unit Editor. Delay by input time constant					
	Input time constant setting	Digital filter				
		Digital filter 1.6 to 2 μs				
	Input time constant setting					
nput time constant*2	Input time constant setting 10 µs	1.6 to 2 μs 9 to 12 μs 90 to 93 μs				
nput time constant*2	Input time constant setting 10 μs 20 μs 110 μs 500 μs	1.6 to 2 μs 9 to 12 μs 90 to 93 μs 300 to 400 μs				
nput time constant*2	Input time constant setting 10 μs 20 μs 110 μs 500 μs 1 ms	1.6 to 2 μs 9 to 12 μs 90 to 93 μs				
Input time constant*2	Input time constant setting 10 μs 20 μs 110 μs 500 μs	1.6 to 2 μs 9 to 12 μs 90 to 93 μs 300 to 400 μs				
Input time constant*2	Input time constant setting 10 μs 20 μs 110 μs 500 μs 1 ms	1.6 to 2 μs 9 to 12 μs 90 to 93 μs 300 to 400 μs 800 to 900 μs				
Input time constant*2	Input time constant setting 10 μs 20 μs 110 μs 500 μs 1 ms 2.5 ms	1.6 to 2 μs 9 to 12 μs 90 to 93 μs 300 to 400 μs 800 to 900 μs 2.3 to 2.4 ms				

Reference value of input current.
 The Reference value of input current.
 The input response time corresponding to the input time constant can be calculated as shown below.
 (Response time) = (Circuit delay of the input circuit) + (Delay by the digital filter)
 Example: Maximum response time when the input time constant is set to 10 µs

OFF to ON: 2 μ s (circuit delay) + 2 μ s (digital filter) = 4 μ s ON to OFF: 2 μ s (circuit delay) + 2 μ s (digital filter) = 4 μ s OFF to ON: 30 μ s (circuit delay) + 400 μ s (digital filter) = 430 μ s ON to OFF: 50 μ s (circuit delay) + 400 μ s (digital filter) = 450 μ s Example: Maximum response time when the input time constant is set to 500 $\ensuremath{\mu s}$

Output specifications - Base unit

Model	KV-N	C32T			
Input type	General output	High-speed output			
Relay number	R506 to R515 (10 points)	R500 to R505 (6 points)			
Output mode	MOSFET (N	I-ch) output			
Rated load	30 VDC, 0.2 A (1.6 A/common)	30 VDC, 0.3 A (1.6 A/common)			
Maximum OFF voltage	30 VDC				
Leakage current when OFF	100 µA or less				
Residual voltage when ON	0.6 VDC or less				
Common point mode	16 points/1 common (Common to high-speed output)	16 points/1 common (Common to general output)			
ON/OFF response time	OFF to ON: 100 µs (load of 1 mA or more) ON to OFF: 200 µs (load of 1 mA or more)	OFF to ON: 2 μs (load of 7 mA or more) ON to OFF: 5 μs (load of 7 mA or more)			
Overcurrent protection	Protection provided for each common*1				
Output frequency	_	100 kHz (7 to 100 mA load)			

tomatic recovery are repeated for all outputs within the shared common until the cause of the problem is removed.

Specifications - Expansion input unit

Model	KV-NC16EX (16 points)		KV-NC16EXE (16 points)			VC32EX points)		
External connection method	Conr	ector		opean nal block	Co	Connector		
Input terminals	24 VDC mode	5 VDC mode	24 VDC mode	5 VDC mode	24 VDC mode	5 VDC mode		
Maximum input voltage			26.4	4 VDC		_		
Rated input voltage	24 VDC, 5 VDC 5.2 mA 1 mA		24 VDC, 5.2 mA	5 VDC 1 mA	24 VDC 5.2 mA	· .		
Minimum ON voltage	19 V 3.5 V		19 V	3.5 V	19 V	3.5 V		
Maximum OFF current	1.5 mA –		1.5 mA	-	1.5 mA	-		
Maximum OFF voltage	-	1.5 V	-	1.5 V	-	1.5 V		
Common point mode		1 common inals)*1	16 points/1 common (2 terminals)*2		32 points/1 common (2 terminals)*1			
	Inpu	ıt time	OFF t	o ON	ON to	ON to OFF		
		nt setting	Тур.	Max.	Тур.	Max.		
Input time constant	2	5 µs	10 µs	50 µs	50 µs	150 µs		
(four-level switching)	30	10 µs	240 µs	290 µs	280 µs	390 µs		
	1	ms	1 ms	1.2 ms	1 ms	1.2 ms		
	10) ms	10 ms	11 ms	10 ms	11 ms		
Input impedance			4.	4 kΩ				
Internal current consumption	20 mA	or less	20 m/	A or less	20 m	20 mA or less		
Weight	Approx	. 100 g	Appro	x. 120 g	Appr	ox. 110 g		

*1 The KV-NC16EX and KV-NC32EX have 2 COM terminals, but these are shared internally. *2 The KV-NC16EXE has 16 COM terminals, but these are shared internally.

Specifications - Built-in serial port

Туре			Built-in port		
Interface	Communication	standard	RS-232C		
Internace	Connection		Modular connector		
	Transmission ra	ite	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps		
	Transmission m	nethod	Full duplex		
T	Data format	Start bit	1 bit		
Transmission		Data bit	7 bits, 8 bits		
specifications		Stop bit	1 bit, 2 bits		
	Error detection	Parity	Even, odd, none		
	Transmission d	istance	15 m 49.2'		
	Number of tran	smission units	1		
Indication			Common between SD/RD SD: (green) RD: (red) The color may appear as orange during transmission.		

Performance specifications - Expansion output unit

Model		KV-NC8ER (8 points)	KV-NC16ET(P) (16 points)			
Output mod	le	Relay	MOSFET (With	MOSFET (With overcurrent protection function)*1		
External co method	nnection	European terminal block	Connector	Connector European terminal block		
Rated load		250 VAC/30 VDC, 2 A		30 VDC. 0.2 A*7		
Leakage cur	rrent when OFF	-		100 µA or less		
Residual vol	ltage when ON	-		0.6 VDC or less		
ON resistance		50 mΩ or less	-			
Common point mode		4 points/1 common (8 terminals)* ³	16 points/1 common (2 terminals)*2 *4 (16 terminals)*2		32 points/1 common (2 terminals)*2*5	
Response time	OFF to ON ON to OFF	10 ms or less	100 µs or less (with a load of 1 mA or more) 200 µs or less (with a load of 1 mA or more)			
Internal curre	nt consumption	70 mA or less	30 mA or less	30 mA or less	50 mA or less	
Weight		Approx. 130 g	Approx. 100 g	Approx. 120 g	Approx. 110 g	
Relay life		Electrical: 100000 cycles or more (20 cycles/minute) Mechanical: 20000000 cycles or more	-			
Relay repla	cement	Impossible		-		

 ^{*1} If even a single overcurrent is detected, the protection operation (output turned OFF) and automatic recovery are repeated for all outputs within the shared common^{***}, until the cause of the problem is removed.
 ^{*2} The COM terminals of the KV-NC16ET(P) (N-VNC16ET(P) and KV-NC32ET(P) are shorted internally.
 ^{*3} The KV-NC8ER has four terminals for each of CO and C1 respectively, which are shorted internally. (CO and C1 are independent.)
 ^{*4} The outputs within the shared common that are protected when an overcurrent is detected are outputs 000 to 007 or 008 to 015 for the KV-NC16ET(P) or KV-NC16ET(P)E.
 ^{*5} The outputs within the shared common that are protected when an overcurrent is detected are outputs 000 to 015 or 100 to 15 for the KV-NC32ET(P).
 ^{*6} MOSFET (N-ch) output for the sink output type; and MOSFET (P-ch) output for the source output type.
 ^{*7} The rated load per common terminal is 1.6 A for the KV-NC16ET(P) or KV-NC32ET(P) and 3.2 A for the KV-NC16ET(P)E. ry are repeated fo

SPECIFICATIONS (Connector type)

Specifications - Expansion I/O unit

Model				KV-NC				KV-NC32EXT (32 + 32 points)		
Futemal		a a the a d		(16 + 16	poir				(32 + 32	points)
External	connection r		-	Connec 16			Inect	1		
	Number of Input mode		2/	24 VDC mode 5 VDC mode				32 24 VDC mode		
	<u> </u>	; input voltage	24	FVDG IIIOUE	5			0	24 VDC	mode
			24	26.4 VE 24 VDC/5.2 mA 5 VDC/1 mA			-	10	24 VDC/	0.6 m/
	Rated input voltage Minimum ON voltage			19 V	C	3.5 V			24 VDG/	
		OFF current	-	1.5 mA		3.3 V	-		1.5 r	
		OFF voltage	-	1.3 IIIA		- 1.5 V	-		1.01	IIA
	IVIdXIIIIUIII	OFF VUILAGE	-	- 16 points/*	1.000		-		– 32 points/1	oommon
Input	Common n	nethod		(1 term				`	2 points/ 1 (2 termii	
						OFF t	- 0	A I	<u>`</u>	D OFF
				Input tim constant set		Typ.		n 1ax.	Typ.	Max.
		Input time constant		25 µs	ung	10 us		0 US	50 us	150 us
	Input time			300 µs		240 μs	-	υ μs 30 μs	280 μs	390 µs
				1 ms		240 µs 1 ms		2 ms	200 µs	1.2 ms
				10 ms	-	10 ms		2 ms 1 ms	10 ms	11 ms
						10 113	<u> </u>	1 1113		
	Input impe		_	4.4 kΩ					6.3	
	Number of	outputs	16						32	2
	Output mo	de	MOSFET (N-ch)							
	Builden		(with overcurrent protection function)*2 30 VDC 0.2 A*3							
	Rated load									
	<u> </u>	irrent at OFF	100 µA or less 0.6 VDC or less							
Output	Residual Vo	oltage at ON	-	0.6 VDC or 16 points/1 common						
	Common n	nethod						32 points/1 common (2 terminals)*1		
			-	(1 terminal)*1					(···	
	Operation	OFF to ON		100 µ	JS Or	less (with a	a loa	nd of 1	mA or mor	e)
	time	ON to OFF	200 µs or less (with a load of 1 mA or more)							
Internal	urrent cons	umption		30 mA or less			Т		60 mA c	or less
Weight			Approx. 120 g Approx. 150 g						Approx.	150 g

Specifications - Temperature input unit

Model	KV-NC4TP						
Number of inputs*1		4					
Input	Thermocouple	Platinum resistance thermometer					
Input range	K: -270.0 to 1372.0°C -454 to 2501.6°F J: -210.0 to 1200.0°C -346 to 2192°F F: -270.0 to 400.0°C -454 to 752°F E: -270.0 to 1000.0°C -454 to 1832°F N: -270.0 to 1300.0°C -454 to 2372°F R: -50.0 to 1768.0°C -58 to 3214.4°F S: -50.0 to 1768.0°C -58 to 3214.4°F B: 0.0 to 1780.0°C -258 to 3214.4°F B: 0.0 to 1820.0°C -215.0 to 1768.0°C -215.0 to 1215.0°C -215.0 to 1215.0°C -215.0 to 1215.0°C	Pt100: -200.0 to 850.0°C -328 to 1562°F JPt100: -200.0 to 600.0°C -328 to 1112°F					
Overall accuracy	±(0.2% of F.S. +1°C 1.8°F) (at 25°C ±5°C 77°F ±9°F) ±(0.4% of F.S. +1°C 1.8°F) (at 0 to 55°C 32 to 131°F)	±0.2% of F.S. (at 25°C ±5°C 77°F ±9°F) ±0.4% of F.S. (at 0 to 55°C 32 to 131°F)					
Allowable wiring resistance	-	100 Ω max./wire (no variation allowed among three wires					
Conversion speed	125 ms,	/channel					
Isolation method	Between input terminals and base unit: Photocoupler/semiconductor relay/transformer isolation Between channels: (When resistance thermometer is not used): Semiconductor relay isolation; (When resistance thermometer is used): No isolation						
Special functions	averaging (time average, cou special data offset, pea	onnection detection, int average, moving average), ik-/bottom-hold, alarm, nput setting					
Internal current consumption		or less					
Weight	Approx	к. 110 g					

*1 Individual setting is possible for each channel.

Model			KV-NC4AD	KV-NC2DA	
Conversion			A/D conversion	D/A conversion	
Analog input points			4 (single end)	2	
		-10 to +10 V	1/8000 2.5 mV	1/8000 2.5 mV	
	Voltage	0 to 10 V	1/4000 2.5 mV	1/4000 2.5 mV	
Analog input range/	voltage	0 to 5 V	1/4000 1.25 mV	1/4000 1.25 mV	
resolution		1 to 5 V	1/3200 1.25 mV	1/3200 1.25 mV	
	Current	0 to 20 mA	1/4000 5 µA	1/4000 5 μA	
	Current	4 to 20 mA	1/3200 5 µA	1/3200 5 µA	
Conversion speed			80 µs/channel*1	80 µs/channel	
		Without temperature	±0.3% of F.S. (at 25°C ±5°C 77°F ±9°F)		
	Voltage	compensation	±0.5% of F.S. (at 0 to 55°C 32 to 131°F)	±0.3% of F.S. (at 25°C ±5°C 77°F ±9°F) ±0.5% of F.S. (at 0 to 55°C 32 to 131°F)	
		With temperature compensation	±0.3% of F.S. (at 0 to 55°C 32 to 131°F)	±0.5% 01 F.S. (at 0 to 55 G 52 to 151 F)	
Conversion precision	Current	Without temperature	±0.4% of F.S. (at 25°C ±5°C 77°F ±9°F)		
		compensation	±0.6% of F.S. (at 0 to 55°C 32 to 131°F)	±0.3% of F.S. (at 25°C ±5°C 77°F ±9°F) ±0.5% of F.S. (at 0 to 55°C 32 to 131°F)	
		With temperature compensation	±0.4% of F.S. (at 0 to 55°C 32 to 131°F)	±0.3% 01 F.S. (at 0 t0 55 G 32 t0 151 F)	
lanut verieterer	Voltage		5 MΩ	-	
Input resistance	Current		250 Ω	-	
Abaaluta maximum input	Voltage		±15 V	-	
Absolute maximum input	Current	±30 mA		-	
Isolation method	Between a	analog input and CPU	Isolated (photocoupler, transformer)		
Isolation method	Between a	analog input channels	No iso	olation	
Minimum load resistance	Voltage		-	1 kΩ	
Maximum load resistance	Current		-	600 Ω	
Special functions			Input range switching, temperature fluctuation compensation enabling/disabling, channel skip, scaling, special data offset, peak-/bottom-hold, zero clip, zero shift, comparator, averaging (time-specified, count-specified, moving average), disconnection detection.		

Specifications - A/D & D/A conversion unit

*1 When the temperature fluctuation compensation is used, the temperature fluctuation compensation time of 80 µs will be added regardless of the number of channels being used.

Specifications - EtherNet/IP[™] unit (communication specifications)

Model				KV-NC1EP
		No. of connections		64* ⁵
		RPI (communication cycle)		0.5 to 10000 ms (0.5 ms increments) Setting is possible for each connection. (Data is updated on the line at specified cycles, independent of the number of nodes.)
			Output to adapter	Cyclic
	0.1	Transmission trigger	Input from adapter	Cyclic/Change Of State*1
	Cyclic communication	Allowable hand for evolic communication	(at 504 Byte)	6000 (pps)*2
CIP	communication	Allowable band for cyclic communication	(at 1444 Byte)	3000 (pps)*2
service		Maximum number of refresh words		8000 words
		Maximum data size for 1 connection*3		504 bytes or 1444 bytes
		Multicast filtering function*4		Provided (IGMP client function)
	Magaza	Class3 (connected type)	Server	No. of connections: 64*6
	Message	UCMM (unconnected type)	Client	No. of simultaneous messages: 32
	communication UCMM (unconnected type)		Server	No. of simultaneous messages: 96
EtherNet	t/IP™ conformanc	e test		Conforming to CT10

*1 Communication can be established with equipment that outputs data in the "Change Of State" method (send data when any change occurs). The KV-NC1EP cannot output data in the Change Of State method.
 *2 Abbreviation of "Packet Per Second," meaning the number of packets that can be sent/received in a second.
 *3 The simultaneity of data in the connection is guaranteed. When 505 bytes or more are used, the equipment to be used must support Large Forward Open (CIP option specification).
 *4 The KV-NC1EP has the IGMP client function that allows filtering of unnecessary multicast packets when the Ethernet switch supporting IGMP Snooping is used.
 *5 The number of connection may exceed 64 where the KV-NC1EP is connected with the multicast of cyclic communication from the originator. The operation of the KV-NC1EP, however, is guaranteed up to 64 connections.
 *6 The value 64 indicates the total connections including those used by the cyclic communication function. Even when the total connection exceeds 64, the operation of the KV-NC1EP is guaranteed up to 64 connections.

Specifications - EtherNet/IP™ unit (performance specifications)

Model	KV-NC1EP				
Function name	No. of	sockets	Port No.		
Function name	TCP	UDP	PULINO.		
PC application*1	8	0	8500 (can be set within the range between 1 and 65535)		
Upper link communication*2 *3	Table 10	1	8501 (can be set within the range between 1 and 65535)		
MC protocol communication*2 *3	Total: 15	1	5000 (can be set within the range between 1 and 65535)*4		
VT5/VT3 connection	0	1	8502 (can be set within the range between 1 and 65535)		
FTP server	4	-	20, 21		
Automatic clock data adjustment	-	1	123		
DNS	-	1	53		
FTP client	2	-	20, 21 (can be set within the range between 1 and 65535)		
Simple PLC link	-	1	5001 (can be set within the range between 1 and 65535)		
EtherNet/IP [™] cyclic communication function	Tatal 000	1	2222		
EtherNet/IP [™] message communication function	Total: 320	1	44818		
Internal current consumption	90 mA or less				
Weight	Approx. 110 g				

*1 KV STUDIO *2 TCP sockets and UDP socket can be used simultaneously. *3 Up to 15 TCP sockets can be used in total. *4 Port numbers can be assigned individually to TCP and UDP sockets.

Specifications - Serial communication adapter

Model			KV-NC10L		KV-N	IC20L		
Port			-	Port1	Port2			
Interface	Communication standard			RS-232C		RS-422A RS-485 (4-wire)	RS-485 (2-wire)	
	Connection		D-sub	9-pin		European terminal block		
	Transmission rate	9		1200, 2400,	4800, 9600, 19200, 38400, 576	i00, 115200 bps		
	Transmission me	thod		Full	duplex		Half duplex	
	Data format	Start bit	1 bit					
		Data bits	7 bits, 8 bits					
Transmission		Stop bits	1 bits, 2 bits					
specifications	Error detection	Parity			Even, odd, none			
	RS/CS flow contr	ol	Enabled,	disabled		-		
	Transmission dist	tance		15 m 49.2'		Extendable up to 1200 m 3937.0'		
	Number of transmission units			1		32		
	Electrical termina	Electrical termination (Terminator)		 Set with the switch on the front panel of the main unit 				
Indication	Indication				SD (orange), RD (orange)			
Weight			Approx. 100 g		Appro	x. 110 g		

Lineup

Specifications

SPECIFICATIONS (Terminal block type)

Performance specifications - Base unit

Model		KV-N14xx	KV-N24xx	KV-N40xx	KV-N60xx			
Calculation control met	hod	Program storage method						
I/O control method			Refresh	method				
Programming language	9	Expanded ladder, KV Script, mnemonic						
Number of instructions		Basic instruction: 81 types and 182 instructions, Application instruction: 39 types and 56 instructions Calculation instruction: 123 types and 311 instructions, Expansion instruction: 92 types and 141 instructions, Total: 335 types and 690 instructions						
Instruction execution	Basic instruction			ninimum	21			
speed	Application instruction	170 ns minimum						
Program capacity		8k s	teps	16k s	teps			
Maximum number of at	tachable I/O units	3		8				
Maximum number of I/ (excluding the base uni		128		256				
Input relay Output relay	R		Total of 0600 points	1 bit (D000 to DE001E)				
Internal auxiliary relay	n		Total of 9600 points 1 bit (R000 to R59915)					
Link relay	В		8192 points 11	pit (B0 to B1FFF)				
Internal auxiliary relay	MR			MR000 to MR59915)				
Latch relay	LR			(LR000 to LR19915)				
Control relay	CR	1440 points 1 bit (CR000 to CR8915)						
Timer	T		512 points 32 bit (TO to T511)					
Counter	С		256 points 32	bit (C0 to C255)				
Data memory	DM		32768 points 16 bi	t (DM0 to DM32767)				
Link register	W			bit (W0 to W3FFF)				
Temporary memory	TM		512 points 16 bi	t (TM0 to TM511)				
I link an and an uniter	OTU	2 points (CT	HO to CTH1)	3 points (CTH0 to CTH2) 4 points (CTH0 to CTH3)				
High-speed counter	CTH	32-bit auto	matic reset counter*1 (Input response: 100) kHz per single phase, 50 kHz per phase dif	ference)*2			
High-speed counter	СТС	4 points (CT	C0 to CTC3)	6 points (CTC0 to CTC5) 8 points (CTC0 to CTC7)				
comparator	616		32 bits, two points p	er high-speed counter				
Index register	Z		12 points 32	bit (Z01 to Z12)				
Control memory	CM		9000 points 16 bi	t (CM0 to CM8999)				
Positioning pulse outpu	n+*3	2 a:		3 axes	4 axes			
	n ·		Maximum output frequency:	100 kHz (KV-NxxxT(P) only)				
		Input: 8 points, output: 6 points	Input: 14 points, output: 10 points	Input: 24 points, output: 16 points	Input: 36 points, output: 24 points			
Base unit I/O		Input common: 1 point	Input common: 1 point	Input common: 1 point	Input common: 1 point			
base unit i/o		Output common: 4 points (R type)	Output common: 5 points (R type)	Output common: 6 points (R type)	Output common: 8 points (R type)			
		1 point (T/TP type)	1 point (T/TP type)	2 points (T/TP type)	3 points (T/TP type)			
Number of comments/	Device comment	10000		20000				
labels			When a maximum-length ladder	program is written with no labels.				
stored in main unit	Label	14000		28000				
	Luboi		When a maximum-length ladder progr					
Power off hold	Program memory			ewritten 10000 times				
function	Device*4			tile RAM				
Self-diagnosis function			CPU error, RAM erro	r, and other problems				

*1 You can also configure the settings so that automatic reset is not used. *2 Only open collectors are supported. Line drivers are not supported. *3 The relay output types (KV-hoxA) do not have the positioning pulse output function. *4 You can set the target device by clicking "CPU system setting" and then "Power off holding" in KV STUDIO.

General specifications - Base unit

Model	KV-N14A	x/N24Ax/N40Ax/N60Ax			KV-N14Dx/N24Dx	/N40Dx	
Power supply type	ŀ	AC power supply type			DC power supply type		
Power voltage	100 t	o 240 VAC (+10%/-15%)		24 VDC (+10%/-15%)			
Output power supply voltage	24 VDC (±10%; output capacity: 0.6 A)			-		
Internal current consumption	KV-N24AT(P): 76 VA, KV-N60AF	(V-N14AT(P): 75 VA, KV-N24AR: 79 VA, KV-N40AR: 86 VA, KV-N40AT(P): 82 VA, R: 91 VA, KV-N60AT(P): 85 VA e calculated with a power factor of 30%.)		KV-N14DR: 160 mA, KV-N14DT(P): 150 mA, KV-N24DR: 190 mA, KV-N24DT(P): 160 mA, KV-N40DR: 280 mA, KV-N40DT(P): 250 mA			
Ambient temperature		0	to 55°C 32 to 131	I°F (no freezing)*1 *	2		
Storage temperature			–25 to +75°C	–13 to +167°F			
Ambient humidity			5 to 95% RH (no	condensation)*1			
Withstand voltage	15	00 VAC for 1 minute, between power	supply terminal an	d I/O terminals and	between all external terminals and	l case	
Noise immunity	1500 V pr	eak-to-peak or more, pulse duration 1	µs, 50 ns (based o	on noise simulator),	IEC standard compliant (IEC6100	0-4-2/3/4/6)	
		Intermitten		nt vibration		Scan times	
		Frequency Ac		eration	Amplitude		
		5 to 9 Hz	-		3.5 mm 0.14"		
Vibration resistance*3	Conforms to JIS B 3502 and	9 to 150 Hz	9.8 m/s ² 32.2'/s ²		-	10 times (100 minutes)	
vibration resistance"	JIS B 3502 and IEC61131-2	Continuou		us vibration		in each of the X, Y,	
	1E001131-2	Frequency	Acceleration		Amplitude	and Z directions	
		5 to 9 Hz		-	1.75 mm 0.07"		
		9 to 150 Hz	4.9 m/s ²	² 16.1'/s ²	-		
Shock resistance		Acceleration: 150 m/s ² 492.1'/s ² , a	application time: 1	1 ms, three times in	each of the X, Y, and Z directions		
Insulation resistance	50 MΩ or more (500	VDC megger used to perform measure	ements between po	ower terminal and in	put terminals, and between all exte	ernal terminals and case)	
Operating environment		As little dust and corrosive gas as possible					
Operating altitude		2000 m 6561.7' or less					
Overvoltage category		AC: II, DC: I					
Pollution degree				2			
Weight	KV-N24AT(P): Approx. 470 g, KV	N14AT(P): Approx. 420 g, KV-N24AR: Aj '-N40AR: Approx. 660 g, KV-N40AT(P): / ox. 820 g, KV-N60AT(P): Approx. 750 g	1 0.		pprox. 350 g, KV-N14DT(P): Approx Approx. 390 g, KV-N40DR: Approx.	x. 330 g, KV-N24DR: Approx. 420 g, 580 g, KV-N40DT(P): Approx. 530 g	

*1 The range guaranteed as a system (excluding items specially noted for the units and cassettes).
*2 The temperature below the unit center (30 mm 1.18") inside a control panel.
*3 These specifications correspond to situations in which the unit is mounted on a DIN rail and in which the unit is mounted on the panel directly.

Input specifications - Base unit

Model	KV-N14xx	KV-N24xx	KV-N40xx	KV-N60xx	KV-N14xx	KV-N24xx	KV-N40xx	KV-N60xx		
Input type		Genera	al input			High-speed A-phase and B-phase input				
Relay number	R000 to R003 (4 points)	R000 to R003, R008 to R013 (10 points)	R000 to R007, R014 to R107 (18 points)	R000 to R007, R100 to R203 (28 points)*1	R004 to R007 (2 channels, 4 points in total)	R004 to R007 (2 channels, 4 points in total)	R008 to R013 (3 channels, 6 points in total)	R008 to R015 (4 channels, 8 points in total)		
Input mode				24 VDC input	(open collector)					
Maximum input voltage				26.4	4 VDC					
Rated input voltage		24 VDC ((5.3 mA*2)			24 VDC ((6.5 mA*2)			
Minimum ON voltage				19	VDC					
Maximum OFF current				1.5	5 mA					
Maximum OFF voltage					-					
Common point mode		All points/1 com	nmon (1 terminal)		Sha	red common for all poin	ts (shared with general i	nput)		
Circuit delay time*³	* The valu	ON to OFF: Max. les are as shown below to OFF to ON: Max. ON to OFF: Max.		mal: 10 ms, When the F	OFF to ON: Max. 2 μs (Typ. 1.1 μs) ON to OFF: Max. 2 μs (Typ. 0.3 μs)					
		When CR2305 is to	urned ON: 10 µs to 10 m	is, eight-level switching	is possible (set with CN	11620). Can also be set i	from the Unit Editor.			
			Input time constant	setting	Digita	l filter	_			
			10 µs		1.6 to					
			20 µs		9 to 1					
Input time constant*3			110 µs		90 to					
			500 µs		300 to					
			1 ms		800 to 900 µs		_			
			2.5 ms		2.3 to 1		_			
			5 ms		4.0 to					
			10 ms		9 to 9	.5 ms	_			
Response frequency			_		Single phas	se: 100 kHz, phase differ	ence: 50 kHz 24 V +109	/ Duty 50%		

*1 The response time increases for R108 to R203.
 *2 Reference value of input current.
 *3 The input response time corresponding to the input time constant can be calculated as shown below. (Response time) = (Circuit delay of the input circuit) + (Delay by the digital filter) Example: Maximum response time when the input time constant is set to 500 µs
 OFF to ON: 30 µs (circuit delay) + 400 µs (digital filter) = 430 µs
 ON to OFF: 50 µs (circuit delay) + 400 µs (digital filter) = 450 µs

Output specifications - Base unit (Transistor output type)

Model	KV-N14xT(P)	KV-N24xT(P)	KV-N40xT(P)	KV-N60xT(P)	KV-N14xT(P)	KV-N24xT(P)	KV-N40xT(P)	KV-N60xT(P)
Output type		Genera	output		High-speed output			
Dalay number	R504 to R505	R504 to R509	R506 to R515	R508 to R607	R500 to R503	R500 to R503	R500 to R505	R500 to R507
Relay number	(2 points)	(6 points)	(10 points)	(16 points)	(4 points)	(4 points)	(6 points)	(8 points)
Output mode				MOS	FET*1			
Rated load		30 VDC, 0.5 A						
Maximum OFF voltage		30 VDC						
Leakage current when OFF				100 µА	or less			
Residual voltage when ON			0.8 VDC or	less (with 0.5 A output)	, 0.6 VDC or less (with 0	.3 A output)		
Common point mode				8 to 10 point	ts/1 common			
ON/OFF reasonations		OFF to ON: 100 µs (I	oad of 1 mA or more)			OFF to ON: 2 µs (7 to 100 mA load)	
ON/OFF response time	ON to OFF: 200 µs (load of 1 mA or more) ON to OFF: 5 µs (7 to 100 mA load)							
Overcurrent protection	Protection provided for each common*2							
Output frequency			-			100 kHz (7 to	100 mA load)	

*1 MOSFET (N-ch) output for the sink output type; and MOSFET (P-ch) output for the source output type. *2 If an overcurrent occurs, the protection operation (output turned OFF) and automatic recovery are repeated for all outputs within the shared common until the cause of the problem is removed.

Output specifications - Base unit (Relay output type)

Model	KV-N14xR	KV-N24xR	KV-N40xR	KV-N60xR		
Dalau aurahan	R500 to R505	R500 to R509	R500 to R515	R500 to R607		
Relay number	(6 points)	(10 points)	(16 points)	(24 points)		
Output mode		Re	lay			
Rated load		250 VAC/3	0 VDC, 2 A			
ON resistance		50 mΩ	or less			
Minimum applicable load		100 µA/1	00 mVDC			
Common point mode		2 to 4 points	s/1 common			
ON/OFF response time		10 ms	or less			
Palau lifa	Electrical: 100000 cycles or more (20 cycles/minute)					
Relay life	Mechanical: 20000000 cycles or more					
Relay replacement	Relay replacement Impossible					

Specifications - Built-in serial port

Туре	Built-in port			
Interface	Communio	ation standa	ard	RS-232C
Internace	Connection	1		Modular connector
		Transmiss	ion rate	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps
		Transmission method		Full duplex
		Data format	Start bit	1 bit
ransmission	BS-232C		Data bit	7 bits, 8 bits
specifications	H0-2020	TOTTIAL	Stop bit	1 bit, 2 bits
		Error detection Parity		Even, odd, none
		Transmissi	ion distance	15 m <mark>49.2</mark> '
		Number of transmissi		1
ndication				SD (green), RD (red)

Specifications

SPECIFICATIONS (Terminal block type/communication unit)

Specifications - Expansion input unit

Model	KV-N8EX	(8 poi	nts)	KV	-N16EX	(16 points	KV-N16EX (16 points)		
External connection method			Termir	nal block	al block				
Input terminals	24 VDC mode	5 VE	C mode 24 VDC mod		C mode	mode 5 VDC mode			
Maximum input voltage			26.4	4 VDC					
Rated input voltage	24 VDC/5.3 mA	5 VE)C/1 mA	24 VDC,	/5.3 mA	5 VDC/1	mA		
Minimum ON voltage	19 V	3	3.5 V	19	V	3.5 V			
Maximum OFF current	1.5 mA		-	1.5	mA	-			
Maximum OFF voltage	- 1.		1.5 V	-	-	1.5 V			
Common point mode	8 points/1 common (2 terminals)*1		minals)*1	16 points/1 comn		non (2 terminals)*1			
	Input ti	me OFF to		D ON ON		to OFF			
	constant s	setting	Тур.	Max.	Тур.	Max.			
Input time constant	25 µs	s	10 µs	50 µs	50 µs	150 µs			
(four-level switching)	300 µ	S	240 µs	290 µs	280 µs	390 µs			
	1 ms		1 ms	1.2 ms	1 ms	1.2 ms			
	10 m	S	10 ms	11 ms	10 ms	11 ms			
Input impedance	4.			3 kΩ					
Internal current consumption	20 mA or less			A or less					
Weight	Approx	. 150 g			Appro>	. 220 g			
*1 The KV-N8EX and KV-N16EX have 2 COM	terminals, but these	are share	ed internally						

Specifications - Expansion output unit

Model		KV-N8ER (8 points)	KV-N16ER (16 points)	KV-N8ET(P) (8 points)	KV-N16ET(P) (16 points)	
Output mode	•	Re	lay	MOSFET With overcurrent protection function*3*5		
External conne	ction method		Termina	al block		
Rated load		250 VAC/3	0 VDC, 2 A	30 VD(C, 0.5 A	
Leakage curren	t when OFF		_	100 µA	or less	
Residual voltag	e when ON		_	0.8 VDC or less (with 0.5 A output) 0.6 VDC or less (with 0.3 A output)		
ON resistance		50 mΩ	or less	_		
Common point	mode	Independent	4 points/1 common (8 terminals)*1	8 points/1 common (4 terminals)*2	16 points/1 common (8 terminals)*2 *4	
Response	OFF to ON	10		100 µs or less (with a load of 1 mA or more)		
time	ON to OFF	10 ms	or less	200 µs or less (with a load of 1 mA or more)		
Relay life		Electrical: 100000 cycles or more (20 cycles/minute) Mechanical: 20000000 cycles or more		_		
Relay replacement		Impo	ssible		_	
Internal current	t consumption	60 mA or less	100 mA or less	30 mA or less	40 mA or less	
Weight		Approx. 230 g	Approx. 260 g	Approx. 160 g	Approx. 210 g	

 Weight
 Approx. 230 g
 Approx. 230 g
 Approx. 230 g
 Approx. 160 g
 Approx. 210 g

 *1 The KV-NBER has two terminals for each of CO, C1, C2, and C3 respectively, which are shorted internally.
 (C0, C1, C2, and C3 are independent.)
 (C1, C1, C2, and C3 are independent.)

Specifications - Analog I/O unit

Model			KV-N3	AM	
Conversion			A/D conversion	D/A conversion	
Number of points			2 (single end)	1	
	-10 to +10 V		1/8000 2.5 mV	1/8000 2.5 mV	
	Voltage*1	0 to 10 V	1/4000 2.5 mV	1/4000 2.5 mV	
Analog I/O range and resolution	voitage	0 to 5 V	1/4000 1.25 mV	1/4000 1.25 mV	
		1 to 5 V	1/3200 1.25 mV	1/3200 1.25 mV	
	Current*1	0 to 20 mA	1/4000 5 µA	1/4000 5 μA	
	Gurrent	4 to 20 mA	1/3200 5 µA	1/3200 5 μA	
Conversion speed			80 µs/channel*2	80 µs/channel*2	
	Voltage	Without temperature compensation	±0.3% of F.S. (at 25°C ±5°C 77°F ±9°F) ±0.5% of F.S. (at 0 to 55°C 32 to 131°F)	±0.3% of F.S. (at 25°C ±5°C 77°F ±9°F) ±0.5% of F.S. (at 0 to 55°C 32 to 131°F)	
Conversion precision		With temperature compensation	±0.3% of F.S. (at 0 to 55°C 32 to 131°F)	±0.0% 01 F.S. (at 0 t0 00 0 32 t0 131°F)	
	Current	Without temperature compensation	±0.4% of F.S. (at 25°C ±5°C 77°F ±9°F) ±0.6% of F.S. (at 0 to 55°C 32 to 131°F)	±0.3% of F.S. (at 25°C ±5°C 77°F ±9°F) ±0.5% of F.S. (at 0 to 55°C 32 to 131°F)	
		With temperature compensation	±0.4% of F.S. (at 0 to 55°C 32 to 131°F)	±0.5% 01 F.S. (at 0 to 55°C 32 to 131°F)	
	Voltage		5 MΩ	-	
Input resistance	Current		250 Ω	-	
Absolute maximum	Voltage		±15 V	_	
nput	Current		±30 mA	-	
	Between a	analog I/O and CPU	Isolated (photocoup	ler, transformer)	
Isolation method	Between a	analog input and output	Non-isol	ated	
	Between a	nalog input channels	Non-isolated	-	
Minimum load resistance	Voltage		-	1 kΩ	
Maximum load resistance	Current		-	600 Ω	
Special functions			Input range switching, temperature fluctuation compensation enabling/ disabling, channel skip, scaling, special data offset, peak-/bottom-hold, zero clip, zero shift, comparator, averaging (time-specified, count-specified, moving average), disconnection detection	Output range switching, output data offset, scaling, error hold, upper/lower limit alarm, output limit, channel skip, output in PROG mode	
Internal current consun	nption		120 mA o	r less	
Weight			200 g]	

*1 For the possible measuring range for out-of-range input, refer to "A/D and D/A conversion table" in "KV-N3AM User's Manual."
*2 When the temperature fluctuation compensation is used, the temperature fluctuation compensation time of 80 µs will be added regardless of the number of channels being used.

Specifications - Expansion I/O unit

Model		KV-N8EXR (8 + 8 points)			KV-N	KV-N8EXT (8 + 8 points)		
External connection method		Terminal block						
Number of inputs					8			
Input m	ode	24 VDC mode 5 V		DC mode 24 VD		C mode 5 VDC mod		
Maximu	m input voltage			26.	4 VDC			
Dated in	put voltage	24 VDC/ 5		5 VDC/ 24		DC/	5 VDC/	
nateu in	iput voltage	5.3 mA		1 mA	5.3	mA	1 mA	
Minimu	m ON voltage	19 V 3.5 V		3.5 V	19 V		3.5 V	
Maximu	m OFF current	1.5 mA		-	1.5 mA		-	
Haximu	m OFF voltage	-		1.5 V	-		1.5 V	
	n point mode		8 po	ints/1 com	mon (1 terr	ninal)*1		
		Input ti	me	OFF t	o ON	ON	to OFF	
		constant s		Typ.	Max.	Typ.	Max.	
		25 µs		10 µs	50 µs	50 µs	150 µs	
Input ti	me constant	300 µ	S	240 µs	290 µs	280 µs	390 µs	
		1 ms		1 ms	1.2 ms	1 ms	1.2 ms	
		10 ms		10 ms	11 ms	10 ms	11 ms	
Inputimpedance		4.3 kΩ						
Input impedance Number of outputs		8						
					1	MOSFET (N-ch)		
Output	mode	Relay			(with ove	(with overcurrent protection function)*		
Rated load		250 VAC/30 VDC, 2 A			(11111010	30 VDC, 0.5 A		
	current when OFF					100 µA		
					0.8 VD0	0.8 VDC or less (with 0.5 A output)		
Residual	voltage when ON	-				0.6 VDC or less (with 0.3 A output)		
ON resi	stance	50 mΩ or less				-		
+		4 points/1 common			8 points/1 common			
Commo	n point mode	(2 terminals)*1 *2			(4 terminals)*1 *3			
õ	0551 000				100 µs or less			
Operati	OFF to ON					(with a load of 1 mA or more)		
time	01110055	10 ms	or less	3	200 µs or less			
	ON to OFF			(with a load of 1 mA or more)				
		Electrical: 100000 cycles						
Relay life		or more (20 cycles/minute),			-			
		Mechanical: 20000000 cycles						
		or more						
Relay re	eplacement	Impossible						
Internal curr	ent consumption	60 mA or less			30 mA or less			
Weight		Approx. 230 g			Approx. 210 g			

Approx.250 g
 Approx.250 g
 Approx.250 g
 Approx.210 g
 A

Lineup

Specifications

Specifications - Extension serial communication cassette

Model		KV-N10L	KV-N11L				
Interface Communication standard Connection		standard	RS-232C	RS-422A/RS-485 (4-wire)	RS-485 (2-wire)		
		D-sub 9-pin European terminal block (cannot be removed or reconnected)					
	Transmission ra	te	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps				
	Transmission m	ethod	Full duplex	Full duplex	Half duplex		
		Start bit		1 bit			
	Data format	Data bit	7 bits, 8 bits				
Transmission		Stop bit		1 bit, 2 bits			
specifications	specifications Error detection Parity RS/CS flow control		Even, odd, none				
			Enabled, disabled	-			
	Transmission distance		15 m 49.2'	Extendable up to 1200 m 3937.0*1			
	Number of trans	mission units	1	32*1			
Electrical termination (Termina		ation (Terminator)	 Set with the switch on the front panel of the main unit 				
Indication	Indication		SD (orange), RD (orange)				
Weight			Approx. 30 g				

*1 This varies depending on the model. For details, see the KV Nano Series "Serial Communication Function User's Manual."

General specifications - KV-EP02

Item	Specifications					
Power voltage	24 VDC (+10%/-15%)					
Ambient temperature		0 to +55°	C 32 to 131°F (no fre	ezing)*1 *2		
Ambient humidity		5 to 9	5% RH (no condensa	tion)*1		
Ambient storage temperature		-2	5 to 75°C –13 to +16	7°F		
Ambient storage humidity		5 to 9	5% RH (no condensa	tion)*1		
Operating environment			st and corrosive gas			
Operating altitude		2	2000 m <mark>6561.7</mark> ' or les	S		
Pollution degree			2			
Overvoltage category			I			
Noise immunity	1500 V peak-to-peak or more, pulse duration 1 µs, 50 ns (based on noise simulator) Conforms to IEC standards (IEC61000-4-2/3/4/6)					
Withstand voltage	1500 VAC for 1 minute, between power supply terminal and I/O terminals and between all external terminals and case (1000 VAC for 1 minute, between power supply terminal and output terminals for the transistor output type expansion I/O unit)					
Insulation resistance	50 MΩ or more (50	50 MΩ or more (500 VDC megger used to perform measurements between power supply terminal and input terminals, and between all external terminals and case)				
			Intermittent vibration		Scan times	
		Frequency	Acceleration	Half amplitude		
	Conforms	5 to 9 Hz	-	3.5 mm 0.14"	10.1	
Vibration resistance*3	to JIS B 3502	9 to 150 Hz	9.8 m/s ² 32.2'/s ²	-	10 times	
VIDIALIUII TESISLAIICE	and IFC61131-2		(100 minutes) in each of the X. Y.			
	010120011012	Frequency	Acceleration	Half amplitude	and 7 directions	
		5 to 9 Hz	-	1.75 mm 0.07"		
		9 to 150 Hz	4.9 m/s ² 16.1'/s ²	-		
Shock resistance*3	Acceleration: 150 m/s ² 492.1'/s ² , application time: 11 ms, three times in each of the X, Y, and Z directions					
Internal current consumption*4	120 mA or less					
Weight			Approx. 130 g			

EtherNet/IP™ communication specifications - KV-EP02

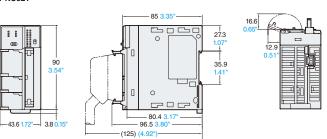
Item		Specifications	
EtherNet/IP™ specifications		Cyclic communication	
	Supported functions	Message communication (Explicit message communication) UCMM and Class 3 supported	
	Number of connections	64	
	RPI (communication cycle)	0.5 to 10000 ms (0.5 ms increments)	
	Trigger	Cyclic	
	Conformance test	Conforming to CT14	

* EtherNet/IPTM is a registered trademark or a trademark of ODVA.

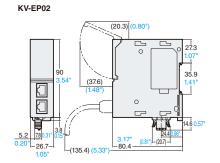
Performance specifications - KV-EP02

ltem	Specifications				
Item	10BASE-T	100BASE-TX			
Connection interface	RJ-45 8-pole modular connector × 2 ports				
Transmission rate*1	10 Mbps	100 Mbps			
Transmission media*2	UTP or STP of category 3 or higher (STP is recommended)	UTP or STP of category 5 or higher (STP is recommended)			
Maximum cable length*3	100 m 328.1'	100 m 328.1'			
Maximum number of connectable hubs*4	4	2			

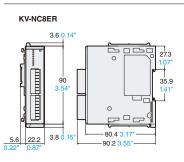
"
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "

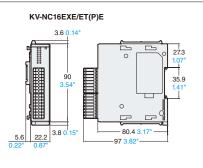

The range guaranteed as a system.
 The range guaranteed as a system.
 The temperature below the unit center (30 mm 1.18°) inside a control panel.
 S When mounted on a DIN rail
 The maximum current consumption when expansion units are included is 1.8 A.

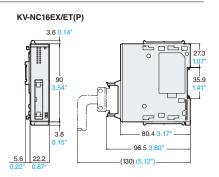
Operating environment

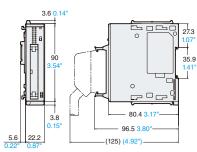

Item name/category	KV STUDIO
OS	Windows® 10/8 (including 8.1)/7(SP1 or higher)
Hard disk free space	3200 MB or more

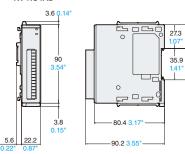
Base unit

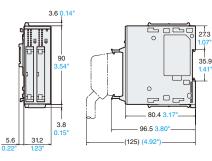

KV-NC32T

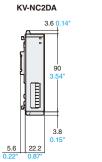



Communication unit

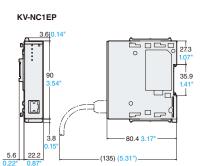

Expansion unit (European terminal block/MIL connector type)

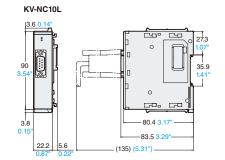


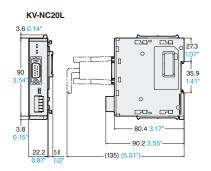



KV-NC32EX/ET(P) KV-NC16EXT

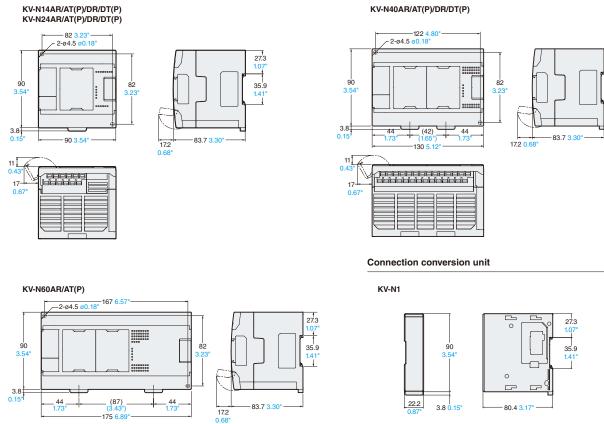
KV-NC32EXT

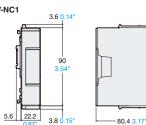



27.3



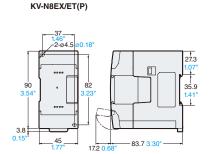
Serial communication adapter




5.6 22.2 0.22" 0.97"

27.3 1.07"

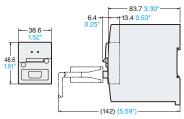
35.9

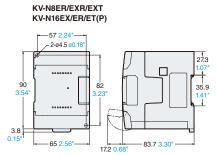

Expansion unit

11

0.4

17


0.67



êfêfêfêfêfêfêfêfêfêfêfêfêfê Jesessessesses

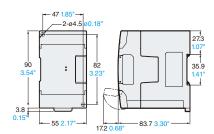
Extension cassette

83.7 3.30

+13.4 0.53"

KV-N11L

0.25" 6.4-

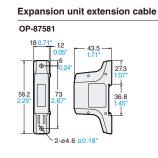

-38.6

. .

8

48.6

KV-N3AM



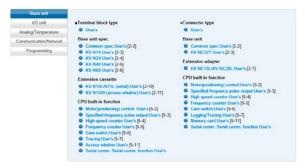
27.3

1.07

35.9

1.41

CAD DATA DOWNLOAD 🕨 www.keyence.com/CADG


Various sample programs available

Sample programs are available for various applications from the KV-8000 Series to KV Nano. This ensures comfortable and efficient programming.

Built-in manuals

Related manuals are included in the software for quick reference. There is no need to download and manage them.

* To use the samples and manuals, select "Help (H)" > "Navigator (reference programs and technical information) (D)" in KV STUDIO.

LIST OF COMPONENTS

List of hardware (Connector type)

Item name/category		Model	Remark	
Base unit	32-point DC power supply type	KV-NC32T	Input 16 points/output 16 points, transistor (sink) output, program capacity 32k steps	
		KV-NC16EXE	16 points, 5/24 VDC switchable, European terminal block	
	Input	KV-NC16EX	16 points, 5/24 VDC switchable, 20-pin MIL connector × 1	
		KV-NC32EX	32 points, 5/24 VDC switchable, 34-pin MIL connector × 1	
		KV-NC8ER	8 points, relay output, European terminal block	
		KV-NC16ETE	16 points, transistor (sink) output, European terminal block	
		KV-NC16ETPE	16 points, transistor (source) output, European terminal block	
	Output	KV-NC16ET	16 points, transistor (sink) output, 20-pin MIL connector x 1	
		KV-NC16ETP	16 points, transistor (source) output, 20-pin MIL connector × 1	
Expansion unit		KV-NC32ET	32 points, transistor (sink) output, 34-pin MIL connector × 1	
		KV-NC32ETP	32 points, transistor (source) output, 34-pin MIL connector × 1	
	Input/output	KV-NC16EXT	Input 16 points/output 16 points, transistor (sink) output, 34-pin MIL connector × 1	
		KV-NC32EXT	Input 32 points/output 32 points, transistor (sink) output, 34-pin MIL connector x 2	
	A/D conversion	KV-NC4AD	Voltage/current input 4 channels, European terminal block	
	D/A conversion	KV-NC2DA	Voltage/current output 2 channels, European terminal block	
	Temperature input	KV-NC4TP	Thermocouple/platinum resistance thermometer multi-input 4 channels, European terminal block	
	EtherNet/IP™	KV-NC1EP	EtherNet/IP™ supported, 100BASE-TX/10BASE-T supported, FTP client/server function	
	Connection conversion unit	KV-NC1	For connecting terminal block type expansion units	
Expansion adapter	Serial communication	KV-NC10L	1 port (RS-232C × 1 channel)	
		KV-NC20L	2 ports (RS-232C × 1 channel, RS-232C/RS-422A/RS-485 × 1 channel)	
Remote I/O	EtherNet/IP [™] supporting communication unit	KV-EP02	2 ports, EtherNet/IP™, 100BASE-TX/10BASE-T	
	EtherNet/IP [™] supporting communication unit	NU-EP1	N-bus supported, PoE function	
Network		DL-EP1	D-bus supported	
NOLWOIN	EtherNet/IP™ supported, 5 ports	NE-Q05	24 VDC, QoS supported	
	Ethernoon Supported, 5 ports	NE-Q05P	24 VDC, QoS supported, PoE function	
		KV-M16G	16 GB	
	SD memory card	KV-M4G	4 GB	
		KV-M1G	1 GB	
	20-pin MIL connector	0P-22185	For KV-NC16Ex, standard contact included	
	34-pin MIL connector	OP-23139	For KV-NC32T/KV-NC32Ex/KV-NCxxEXT, standard contact included, vertical	
Option		0P-42224	For KV-NC32T/KV-NC32Ex/KV-NCxxEXT, standard contact included, slanted	
	Contacts	OP-22186	For standard AWG22-24, 200 pieces	
	Thin-wire contacts	OP-30594	For standard AWG26-28, 200 pieces	
	Special crimping tool for MIL connectors	0P-21734		
	USB cable	0P-35331	Cable length 3 m 9.8'	
	External USB port adapter	KV-S2	Cable length 1 m 3.3	

List of hardware (Terminal block type)

Item name/category		Model	Remark	
	14-point AC power supply type	KV-N14AR	Input 8 points/output 6 points, relay output, program capacity 8k steps	
		KV-N14AT	Input 8 points/output 6 points, transistor (sink) output, program capacity 8k steps	
		KV-N14ATP	Input 8 points/output 6 points, transistor (source) output, program capacity 8k steps	
		KV-N14DR	Input 8 points/output 6 points, relay output, program capacity 8k steps	
	14-point DC power supply type	KV-N14DT	Input 8 points/output 6 points, transistor (sink) output, program capacity 8k steps	
		KV-N14DTP	Input 8 points/output 6 points, transistor (source) output, program capacity 8k steps	
		KV-N24AR	Input 14 points/output 10 points, relay output, program capacity 8k steps	
	24-point AC power supply type	KV-N24AT	Input 14 points/output 10 points, transistor (sink) output, program capacity 8k steps	
		KV-N24ATP	Input 14 points/output 10 points, transistor (source) output, program capacity 8k steps	
		KV-N24DR	Input 14 points/output 10 points, relay output, program capacity 8k steps	
ase unit	24-point DC power supply type	KV-N24DT	Input 14 points/output 10 points, transistor (sink) output, program capacity 8k steps	
		KV-N24DTP	Input 14 points/output 10 points, transistor (source) output, program capacity 8k steps	
		KV-N40AR	Input 24 points/output 16 points, relay output, program capacity 16k steps	
	40-point AC power supply type	KV-N40AT	Input 24 points/output 16 points, transistor (sink) output, program capacity 16k steps	
		KV-N40ATP	Input 24 points/output 16 points, transistor (source) output, program capacity 16k steps	
		KV-N40DR	Input 24 points/output 16 points, relay output, program capacity 16k steps	
	40-point DC power supply type	KV-N40DT	Input 24 points/output 16 points, transistor (sink) output, program capacity 16k steps	
	· · · · · · · · · · · · · · · · · · ·	KV-N40DTP	Input 24 points/output 16 points, transistor (source) output, program capacity 16k steps	
	60-point AC power supply type	KV-N60AR	Input 36 points/output 24 points, relay output, program capacity 16k steps	
		KV-N60AT	Input 36 points/output 24 points, transistor (sink) output, program capacity 16k steps	
		KV-N60ATP	Input 36 points/output 24 points, transistor (source) output, program capacity 16k steps	
	Input	KV-N8EX	8 points, 5/24 VDC switchable, screw terminal block	
		KV-N16EX	16 points, 5/24 VDC switchable, screw terminal block	
	Output	KV-N8ER	8 points, relay output, screw terminal block	
		KV-N8ET	8 points, transistor (sink) output, screw terminal block	
		KV-N8ETP	8 points, transistor (source) output, screw terminal block	
		KV-N16ER	16 points, relay output, screw terminal block	
xpansion unit		KV-N16ET	16 points, transistor (sink) output, screw terminal block	
		KV-N16ETP	16 points, transistor (source) output, screw terminal block	
		KV-N8EXR	Input 8 points/output 8 points, relay output, screw terminal block	
	Input/output	KV-N8EXT	Input 8 points/output 8 points, transistor (sink) output, screw terminal block	
	A/D conversion, D/A conversion	KV-N3AM	Voltage/current input 2 channels + Voltage/current output 1 channel	
	Connection conversion unit	KV-N1	For connecting connector type expansion units	
		KV-N10L	1 port (RS-232C × 1 channel)	
xtension cassette	Serial communication	KV-N11L	1 port (RS-422A/RS-485 (4-wire)/RS-485 (2-wire) × 1 channel), European terminal block	
	Extension cable	0P-87581	Cable length 1 m 3.3', width 2 cm 0.79"	
	USB cable	0P-35331	Cable length 3 m 9.8'	

Software

Classification	Item name	Model	Functions/Specifications
Programming support software	KV STUDIO Ver. 11 (US version)	KV-H1A-DL	Download version, Windows® 10/8/7-compatible, site license*

* Through user registration, the software can be used by multiple persons associated with the office (including factories, business offices, and sales offices) that purchased the software.

• Microsoft, Windows, Excel and PowerPoint are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries

Lineup

Related Products

Programmable logic controller

KV-8000

Fusion of superior processing ability with the Machine Operation Recorder function

- Improved high-speed performance × responsiveness × synchronicity
- Freely customizable large-capacity CPU memory
- Records all the information before and after a problem occursEquipped with an autonomous unit and a high-speed unit
- capable of utilizing the CPU unit's capabilities

Touch panel display

Touch Panel Display VT5 Series/VT5-WX Series Windows® OS embedded VT5-WX Large type: VT5-X, Medium, small type VT5-W

Advanced graphics and usability

- Incredible display performance with 16 million colors
- All sizes use high-resolution LCD
- Speech synthesis with multi-language support
- Automatic translation into multiple languages

CONTACT YOUR NEAREST OFFICE FOR RELEASE STATUS

KEYENCE CORPORATION OF AMERICA

Head Office 500 Park Boulevard, Suite 200, Itasca, IL 60143, U.S.A. PHONE: +1-201-930-0100 FAX: +1-855-539-0123 E-mail: keyence@keyence.com

The information in this publication is based on KEYENCE's internal research/evaluation at the time of release and is subject to change without notice. Company and product names mentioned in this catalog are either trademarks or registered trademarks of their respective companies. The specifications are expressed in metric units. The English units have been converted from the original metric units. Unauthorized reproduction of this catalog is strictly prohibited. Copyright © 2021 KEYENCE CORPORATION. All rights reserved.

KA1_Only-1039